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ABSTRACT 
Software armoring techniques have increasingly created problems 
for reverse engineers and software security analysts.  As 
protections such as packers, run-time obfuscators, virtual machine 
and debugger detectors become common, newer methods must be 
developed to cope with them.  In this paper we will present our 
covert debugging platform named Saffron.  Saffron is based upon 
dynamic instrumentation techniques as well as a newly developed 
page fault assisted debugger.  We show that the combination of 
these two techniques is effective in removing armoring from most 
software armoring systems. 

1. INTRODUCTION 
Software programs are becoming more difficult to reverse 
engineer and analyze.  A variety of methods are being used to 
prevent standard disassembly techniques.  These methods were 
pioneered in the realm of anti-piracy and intellectual property  
protection but have recently found their way into malicious 
software for the purposes of preventing analysis and defense. 
These methods are often called obfuscation, packing or armoring. 

 

There are many ways that software can protect, or armor itself, 
from analysis.  The first is to perform simple debugger detection.  
On Windows systems this is done by analyzing the process 
execution block (PEB) for the presence of the debugger bit.  
Methods exist for toggling this bit, while still retaining the 
debugging functionality.  Unfortunately anti-debugging methods 
have compensated for this.  Methods such as int3 scanning, which 
look for the presence of a debugging instruction call, are effective 
at circumventing detecting debugger access.  Hardware debugging 
detection and memory debugging methodologies also exist [1] for 
determining a non-standard system arrangement. 

 

A common method for instrumenting application behavior is to 
use a virtual machine to simulate a full running environment.  
This has the benefit of isolating the running code inside of a self-
contained environment which can be more closely controlled than 
raw hardware.  There are several software armorning techniques 
that can be used for generically detecting the presence of virtual 
machines. All current virtual machines exhibit identifiable 
characteristics which can be used to change program operation. 
[2] 

 

One of the more insidious and difficult to analyze forms of binary 
obfuscation is the shifting decode frame.  This partially decodes a 
running program, executes that code, and then re-encodes it 

before executing a new portion.  This provides the greatest 
difficulty for decoding, disassembling and debugging. [3] 

 

Software armoring is becoming heavily used by malware. 
Legitimate software has been using techniques like these to 
protect themselves from analysis and modification for some time.  
Windows Server 2003 and Windows Vista employ a system to 
protect their internal workings.  [4,5] Other software is using 
these systems to both reduce the size of their distribution and 
prevent reverse engineering.  This presents a great difficulty to the 
security analyst for both understanding and assessing risk of 
applications as well as analyzing and defending against malware 
threats. 

 

This paper will present two methods for generically removing 
packer and obfuscation from executable binaries. The first 
technique will show that using dynamic translation can be useful 
in finding insight into the post-decode, non shifting-decode-frame 
method of software armoring. The second method is to modify the 
pagefault handler of an operating system to monitor code 
execution.  To make sure the pagefault handler is fully involved in 
the entire process, page-marking techniques similar to that of 
OllyBonE [6], PaX [7], and Shadow Walker [8] will be 
employed.  Using these two methods it will be shown that 
effective single-stepping methods can be employed against 
common packing and software packing methods used by malware. 

 

The organization of the paper is as follows.  An in-depth 
discussion of the methods and techniques for detecting debuggers 
will be presented as well as common circumvention methods.  
Next virtual machine detection methods will be shown.  Next the 
requirements for a covert debugging framework will be presented.  
Dynamic translation will be discussed as a solution.  OS assisted 
methods, centering on the page-fault handler will be presented in 
detail.  The application of the techniques will be shown with 
regard to malware analysis.  Finally fundamental issues in 
detection of this mechanism will be presented, as well as future 
steps to prevent discovery and preserve access to the debugging 
system. 

1.1 Related Work 
Dynamic instrumentation has been used to monitor program 
processes previously.  The method of automatically tracing 
program execution for the purpose of extracting relevant 
information has been proposed for the SPiKE framework [9].  
Runtime debugging of malware has also been proposed by 



Cifuentes, Waddington, and Van Emmerik as a method for rapidly 
understanding program execution. [10] The PIN system has been 
used by Ma, Dunagon, et. al for tracing the injection of malicious 
code into a vulnerable service. [11]  The importance of analyzing 
dynamic behavior was also illustrated by the TTanalyze tool. [12] 

 

The memory management process creates several opportunities 
for subversion.  Offensive-uses of this system include the rootkit 
Shadow Walker used this method to reroute memory references 
rootkit discovery prevention.  Shadow Walker is used to hide 
rootkit memory pages from the operating system or non-shadow 
walker executables.  It does this by marking all its pages as non-
paged, and then marks the dirty-bit.  This causes the pagefault 
handler to be invoked for every memory access to the root kits 
memory pages.  Using a subverted memory paging system, the 
rootkit points non-rootkit accesses to gibberish sections of 
memory.  When it receives paging requests it allows them 
through. [8] 

 

The PaX system uses the page fault mechanism to implement no-
execute on systems without hardware support for the Linux 
operating system.  PaX marks all memory pages with the 
supervisor flag.  This causes the hardware pagefault handler to 
invoke the page-fault trap handler to accommodate the error.  PaX 
simply determines whether an attempted execute was the result of 
an execute operation.  If the result is an execute operation, then a 
fault is raised and the program is terminated.  [7] 

 

OllyBonE uses a similar techinique as PaX and Shadow Walker to 
implement break-on-execute.  It interfaces with OllyDbg to be 
able to break on regions of memory.  This allows the reverse 
engineer to identify where a possible execution region for the 
original entry point is at, and then trigger a debug at that point.  
OllyBonE uses the supervisor bit of the page table as well. [6] 

 

2. SOFTWARE ARMORING TECHNIQUES 
It is useful to have an understanding of the methods used by 
reverse engineers to gain an understanding of how to stop them.  
Reverse engineers have a common set of tools that are used to 
find useful information from a binary.  The goal of the developer 
protecting her code is to prevent the reverse engineer from 
discovering how it works.  In this context it is useful to analyze 
the techniques from both sides of the conflict.  This section will 
discuss packing, virtual machine detection, debugger detection, 
and finally the shifting decode problem. 

 

2.1 Packing / Encryption 
Packing is the method that an executable uses to obfuscate an 
executable or to reduce its size.  Packers are typically 
implemented with a small decoder stub which is used to unpack, 
or deobfuscate the binary in question.  Once the decoding or 
“unpacking” process is complete, the decoder stub then transfers 
control back to the original code of the program.  Execution then 
proceeds similarly to that of a normal executable.  Packers create 
problems for malware analysts.  First, current methods that are 
generically available require the analyst to manually single-step a 

debugger in order to find and expose the actual code executable or 
to analyze the assembly of the decoding stub in-depth in order to 
write a decoder.  Second, many techniques such as those 
described in section 2.3 can be used to thwart the unpacking 
process. 

 

2.2 Virtual Machine Detection 
Detecting the presence of a virtual machine is one of the most 
important methods available to the malware author to protect his 
code from analysis.  Typically under normal operations a 
malicious program will never be run inside of a virtual machine.  
The typical targets for malware authors are stand-alone systems 
that are being used for everyday tasks such as email, and online 
banking.  If a virtual machine is detected, it is most likely being 
used to analyze the malware.  Due to inherent flaws in the X86 
architecture, virtualization cannot be supported at the hardware 
level.  Certain instructions are known to be problematic. [13] As 
such there are a few common methods that are available to detect 
these.   

 

The common theme throughout all of the advanced virtual 
machine detection methodologies is a single instruction that must 
yield the same results in ring-0, or the kernel execution space, and 
at the user privilege execution space.   For the x86 architecture 
these are composed of the SLDT, SIDT, and SGDT instructions.  
The malware author can simply perform these instructions, and 
compare the results afterwards.  Results will be different for 
virtual machines executing these instructions when compared to 
real-hardware executing them.  [2] One method that can be used 
to circumvent this detection is to disable “acceleration” inside of a 
virtual machine environment. (in this case VMWare)  This 
degrades performance but is usually sufficient enough to evade 
detection.  Unfortunately when running in the non-accelerated 
mode there are still processor implementation discrepancies that 
can be used to identify the presence of a virtual machine.  [14] 

 

2.3 Debugger Detection 
Debugging a running executable is one of the most powerful 
techniques available to a reverse engineer to quickly understand 
program execution.  Using this method, it is possible to see the 
actual run-time dynamics of an executable, as well as monitor 
system calls.  Unfortunately the presence of a debugger is trival  
for the process being debugged to detect.  This section will 
discuss process debugging in detail. 

 

2.3.1 Windows Debugging API 
The Windows operating system implements a robust API for 
developing custom debuggers for applications.  It is implemented 
using a call-back method which allows the operating system to 
single-step a running program at the machine instruction level.  
This API is used by the OllyDbg, WinDbg, and Visual Studio 
debuggers.  The API allows the running program to receive events 
based on pre-set instruction level flagging.  Detection of this type 
of debugger is as simple as looking at the process execution block 
PEB for a running program.  The PEB is a data-structure that 
contains information relevant to the running program inside of the 



Windows operating system.  One field that is available inside the 
data-structure is BeingDebugged field.  If this bit is set, it 
indicates that a debugger is attached to the process.  Fortunately 
for the analyst, this bit can be toggled without losing the 
debugging capability.   

2.3.2 INT3 Instruction Scanning 

The next method used to implement a debugger is the INT3 
instruction, sometimes referred to as a breakpoint exception.  This 
instruction causes a CPU trap to occur in the operating system.  
The trap is then propagated to the running program via the 
operating system and passed to the running program.  This 
provides a method by which a developer can set a breakpoint.  
However, programmers almost never put int 3 instructions directly 
into their programs so it is likely that if this is observed, a process 
is being monitored. Malware authors have implemented various 
methods to scan for the presence of this INT3 instruction, and 
alter execution if it is found.  A simple CRC check or MD5SUM 
can detect and validate that the code has not been altered by an 
INT3. 

 

2.3.3 Unhandled Structured Exception Handlers 
Structured exception handler (SEH) unpacking creates another 
interesting problem for the reverse engineer.  SEH are a method of 
catching exceptions from running applications.  These are used 
when a particular program has a runtime error.  Normally when an 
SEH is reached execution is passed to the handler the program 
developer has defined, or treated as an unhandled exception and 
execution halts. Malware authors have seized this as a method for 
implementing an unpacker.  The malware author inserts a SEH 
and their own handler. This handler is typically a set of unpacking 
instructions. The SEH frame contains a pointer to the previous 
SEH frame and a pointer to the exception handler for the current 
frame.  By triggering SEH exceptions the stack of a malware 
program is unwound until an appropriate handler is found.  Due to 
the nature of the debugging interface, the debugger will insert its 
own SEH handling onto this stack.  When the debugged program 
is run, it will raise an exception.  This causes the debugger’s stack 
to catch and handle the SEH instead, possibly crashing the 
debugger and preventing the malware from unpacking itself.   
Since there is no way for the debugger to discern between an 
exception generated by an error in its program, and the debugged 
program, this typically thwarts unpacking.  Debugging programs 
such as OllyDbg have implemented methods to allow the reverse 
engineer to either handle the exception inside the debugger, or 
hand it to the debugged application’s stack.  This can be a very 
manual and tedious process if many SEHs are used. 

2.3.4 Mid-Instruction Jumping 
Typically a debugger will try to interpret the machine code of a 
running executable and print out more human readable output.  
Given the non-fixed-size of the Intel instruction set, this creates 
many opportunities for obfuscation of the run-time execution.  A 
typical trick that can be performed is to take a long instruction and 
the value 0x90 as a parameter.  This last parameter, interpreted on 
its own is the nop, or no-operation instruction.  This will cause the 
CPU to run to the next instruction and continue execution.  

2.3.5 Shifting Decode Frame 
Shifting decode frame is a method by which a portion of the 
executable is unpacked, executed, then re-encoded.  This method 
has the effect of preventing static post-execution analysis.  This 
precludes the ability to step the executable to the position of the 
original entry point, and dump the entire executable.  It also 
significantly affects program analysis and creates problems for 
rapid analysis.  Therefore the only options available are to reverse 
engineer the decoding mechanism and manually decode the 
executable, or to use a dynamic method to extract the relevant 
information.  The rest of this paper will focus on dynamic 
methods of program execution monitoring. 

 

3. DEBUGGING REQUIREMENTS 
Software armoring techniques all have a single common failure 
point, which is the processor must execute real machine code. 
Once this occurs an analyst should be able to observe and 
understand the code’s functionality and capabilities.  While there 
are methods such as RISE [16]  that could add further difficulty 
the analyst’s ability to observe and understand deobfuscated code 
execution in general most armoring techniques succumb to this 
fundamental situation.  

 

Covert debugging is defined as the method of being able to single 
step and analyze a running program without indication to the 
debugee of this status. The requirements for a covert debugging 
system are as follows.  First it should be able to handle a wide-
variety of executables.  This paper limits its scope to the context 
of portable executable PE files running under the Windows 
operating system.  PE files were chosen as the majority of 
malware threats are present on the Windows platform.  Given the 
different methods for protecting PE files, a system that could 
robustly handle each of these without difficulty was needed. 

 

Efficiency is a prime concern. Given a sufficiently large collection 
of malware it is important to be able to extract relevant 
information rapidly without incurring too much overhead.  The 
analyst’s time is valuable therefore speed and automation are 
essential.  

 

4. DYNAMIC INSTRUMENTATION 
Dynamic instrumentation (DI) can be used to trace the exact 
execution of a debugged binary.  This has many applications 
inside of computer architecture analysis as well as program 
analysis.  DI tools such as Valgrind and PIN can provide insight 
into the execution characteristics of a program.  For malware 
analysis Pin is especially useful. 

 

Intel PIN is a highly configurable software tool for tracking the 
run-time execution of a program.  Pin interfaces with the machine 
code via a series of callbacks that are registered on analysis 
startup.  One can divert execution of a program at each instruction 
step.  Memory access can also be monitored for reads and writes 
to addresses.  All of these systems make it easy to monitor a 
running program, and divert execution if necessary. 



4.1 Application to Packed Executables 
Saffron uses PIN’s dynamic runtime tracing to monitor the flow 
of executables.  The results that are found are quite startling.  First 
it is possible to find the original entry point for a packed 
executable.  In section two we highlighted various methods used 
to protect and compress a running executable.  By tracking the 
memory reads and writes, we can watch where the program 
modifies memory locations during the course of execution.  
Furthermore we can use this information to watch for executions 
inside of this written memory area.  This is a highly likely 
candidate for an original entry point. 

 

4.2 Results 
The packers ASPack, UPX, FSG, and PeCompact, and TeLock 
were considered for the initial set of tests.  These packers either 
compress or obfuscate a malicious binary.  In each case except for 
TeLock, the use of a specialized PIN module was able to identify 
the original entry point for the packed executable.  The results 
were then verified by manually reverse engineering the 
executable.   The TeLock packed executable did not run properly 
when monitored using the PIN instrumentation library.  Telock 
uses a memory CRC check prior to relinquishing control to the 
original entry point.   

 

There are other problems with dynamic instrumentation.  First it is 
extremely slow, especially when monitoring at the instruction 
level.  Packers that use SEH for unpacking also present the same 
problems with PIN as they do with standard debuggers.  Due to 
this it is necessary to move outside of the context of a userspace 
solution, and look at controlling execution from the kernel mode. 

 

5. PAGEFAULT HANDLER DEBUGGING 
The pagefault handler is an important part of modern operating 
systems.  Its primary purpose is to assist the CPU’s memory 
management unit in paging, or writing to disk, contents of the 
virtual memory space.  It also performs tasks such as enforcing 
permissions for kernel mode versus user mode memory regions.  
Since it has a special place within the operating system, mainly 
controlling access to the memory of all the applications on a 
system, it can be used to control the execution of an executing 
program.  The bulk of this work is a modification of the OllyBonE 
tool by Joe Stewart.  This section will discuss the implementation 
of the new method, which has been named Saffron. 

 

5.1 X86 Memory Management 
The X86 architecture implements a combination of segmentation 
and paging mechanisms for implementing virtual memory.  [15] 
Virtual memory is simply a method to create a protected address 
space for processes running on a computer system.  It allows for a 
non-contiguous address space (physical memory) to be used as a 
contiguous one (virtual memory).  The memory address that an 
application refers to must undergo a transformation to the physical 
address space of the main memory.  The translation look-aside 
buffer (TLB) is primarily responsible for performing this lookup.  
The purpose of the TLB is to improve speed by using hardware to 
assist the lookup process for a section of memory.   

5.2 The TLB Process 
At its core, the TLB is an associative array for translated blocks of 
memory.  When a virtual address is first referenced in a program, 
the TLB will look to see if it is present in its cache.  If it is found 
the physical address is translated without further action.  This is 
referred to as a “hit”.  If the address is not found it is referred to as 
a “miss”.  For the miss case, there are two common methods for 
memory management architectures.  The first is to have the TLB 
walk the segment tables to check for the existence of a memory 
page.  If the page is found in memory it is returned and entered 
into the TLB for future lookups.  If the page is not found, or the 
page table entry (PTE) has any access flags set the page-fault 
handler is invoked.  It is then up to the operating system to 
perform a software lookup of the memory address.  If the OS can 
find no reference to the page of memory, then an exception occurs 
and the OS must handle it. [15] 

 

Figure 1: Typical TLB / OS Interaction 

 

Each process has its own set of segments that are used.  On a 
process context-switch, the TLB flushes its caching and begins the 
process of loading new memory translations.  The actual 
characteristics of memory are controlled by a data structure called 
a page table entry (PTE).  The PTE contains various flags for 
permission controls of the particular section of memory.   

 

When the TLB begins the process of translating a virtual address 
to a physical one it first checks its local cache.  If the cache does 
not contain an entry for the virtual address it then begins to 
manually traverse the page tables to find the virtual address in 
hardware.  Once the page table entry has been found, it checks a 



series of fields to make sure that the permissions are correct.  
Once this is done the memory address is returned to the 
referencing instruction.  Figure 1 illustrates this process. 

 

5.3 Saffron’s Pagefault Implementation 
To implement the debugging of an executable, the program must 
allow for a stepping operation of the executable.  The previous 
implementations are focused on stopping or diverting execution.  
Furthermore they are privileged enough to have knowledge of 
specific areas of memory to fault on.  Shadow Walker uses its 
own memory that it can control in non-paged memory.  PaX has 
low-level access to the OS primitives which control the memory 
management mechanism under Linux.  OllyBonE relies on the 
reverse engineer tagging various areas of memory which it knows 
are valid.  Unfortunately this pre-knowledge cannot and is not 
known at the time of execution for a generic application.  Saffron 
consists of two distinct elements.  First it uses a hybrid memory 
scanning and tagging mechanism to identify memory areas.  
Second a modified version of the page-fault trap handler is used 
to dispatch information on the page-faults. 

 

The memory mapping algorithm is a brute-force on the entire 
process’s virtual memory area.  All memory addresses are 
enumerated based on the page boundaries.  These addresses are 
then tagged with the supervisor bit so execution can be monitored.  
The page tag boundaries are useful in optimizing this marking 
process.   

 

The page fault execution detection is very similar to the code used 
in Shadow Walker and OllyBonE.  The modification to this 
method is to move from a faulting operation to a logging 
operation.  The other modification is to allow the address to 
continue to execute once it has been logged instead of triggering 
the debug interrupt. 

 

5.4 Results on Packed Executables 
The same method was implemented as in section 4.1.  Since there 
is no modification to the process’ address space, there is no 
method for detection in the context of the executable.  Monitoring 
of runtime execution allows for a coarse grain view of the 
executable.  As expected this allows the detection of the original 
entry point on a packed executable. 

 

There are some problems with this method.  Since the page caches 
are aligned on a 4k boundary, there will be times when a memory 
read or write will go unnoticed by Saffron.  Even with this method 
it is still possible to track an executable sufficiently enough to find 
out where the original entry point is located or to get a dump of 
the process’s memory space with useful, deobfuscated 
information.  

6. CONCLUSION AND FUTURE WORK 
Dynamic instrumentation and pagefault handler subversion are 
extremely useful for tracking the execution of unknown or 
obfuscated executables.  Since dynamic translation affords the 
most control over an executable, it should be the first method 

attempted when tracing runtime execution.  If a particularly 
virulent and clever method is able to subvert that, the page fault 
execution mechanism is useful to track memory usages. 

 

There is much work to be done in the methods of making the page 
fault tracking mechanism more robust.   The Intel implementation 
of a split data TLB and instruction TLB causes problems with 
fully tracing the runtime execution using the page fault 
mechanism.   One useful application of this method would be to 
apply it to a shifting frame decode unpacking method.  
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