Covert Debugging

Circumventing Software Armoring Techniques

Danny Quist

Valsmith
Offensive Computing, LLC

{dquist,valsmith}@offensivecomputing.net

ABSTRACT

Software armoring techniques have increasinglyteteproblems
for reverse engineers and software security arsalystAs

protections such as packers, run-time obfuscatateal machine
and debugger detectors become common, newer metmagisbe
developed to cope with them. In this paper we pitsent our
covert debugging platform named Saffron. Saffrobased upon
dynamic instrumentation techniques as well as dyhdeveloped
page fault assisted debugger. We show that théioation of

these two techniques is effective in removing aingpfrom most

software armoring systems.

1. INTRODUCTION

Software programs are becoming more difficult toverse
engineer and analyze. A variety of methods aradeised to
prevent standard disassembly techniques. Theskodstwere
pioneered in the realm of anti-piracy and intellettproperty
protection but have recently found their way intaligious
software for the purposes of preventing analysid defense.
These methods are often called obfuscation, paakimgmoring.

There are many ways that software can protectrmoritself,
from analysis. The first is to perform simple dgber detection.
On Windows systems this is done by analyzing thecgss
execution block (PEB) for the presence of the dgbugbit.
Methods exist for toggling this bit, while still tegning the
debugging functionality. Unfortunately anti-debirgg methods
have compensated for this. Methods such as irtBnseg, which
look for the presence of a debugging instructidh ese effective
at circumventing detecting debugger access. Hasldebugging
detection and memory debugging methodologies adst ] for
determining a non-standard system arrangement.

A common method for instrumenting application bebavs to

use a virtual machine to simulate a full runningrimnment.
This has the benefit of isolating the running causde of a self-
contained environment which can be more closelyrotiad than
raw hardware. There are several software armort@nigniques
that can be used for generically detecting theepres of virtual
machines. All current virtual machines exhibit itéable

characteristics which can be used to change progiaenation.

(2]

One of the more insidious and difficult to analyaens of binary
obfuscation is the shifting decode frame. Thidiplly decodes a
running program, executes that code, and then cedas it

before executing a new portion. This provides treatest
difficulty for decoding, disassembling and debuggif8]

Software armoring is becoming heavily used by medwa
Legitimate software has been using techniques thiese to
protect themselves from analysis and modificatimnsbme time.
Windows Server 2003 and Windows Vista employ aesysto
protect their internal workings. [4,5] Other sadiw is using
these systems to both reduce the size of theirilalision and
prevent reverse engineering. This presents a diffiatilty to the
security analyst for both understanding and assgsssk of
applications as well as analyzing and defendindnaganalware
threats.

This paper will present two methods for genericakynoving
packer and obfuscation from executable binariese Tinst
technique will show that using dynamic translateam be useful
in finding insight into the post-decode, non shiftidecode-frame
method of software armoring. The second method mddify the
pagefault handler of an operating system to monitode
execution. To make sure the pagefault handledig ihvolved in
the entire process, page-marking techniques sinbdathat of
OllyBonE [6], PaX [7], and Shadow Walker [8] willeb
employed. Using these two methods it will be shothat
effective single-stepping methods can be employgeainat
common packing and software packing methods usedabyare.

The organization of the paper is as follows. Andépth

discussion of the methods and techniques for detedebuggers
will be presented as well as common circumventiogthmds.

Next virtual machine detection methods will be showNext the
requirements for a covert debugging framework bdlpresented.
Dynamic translation will be discussed as a soluti@S assisted
methods, centering on the page-fault handler vélpbesented in
detail. The application of the techniques will Blgown with

regard to malware analysis. Finally fundamentaués in

detection of this mechanism will be presented, af as future
steps to prevent discovery and preserve accessetddabugging
system.

1.1 Related Work

Dynamic instrumentation has been used to monitagnam
processes previously. The method of automaticaiacing

program execution for the purpose of extractingevaht
information has been proposed for the SPIKE framkw8].

Runtime debugging of malware has also been propdsed



Cifuentes, Waddington, and Van Emmerik as a mefoodapidly
understanding program execution. [10] The PIN sydt@s been
used by Ma, Dunagon, et. al for tracing the inetof malicious
code into a vulnerable service. [11] The importantanalyzing
dynamic behavior was also illustrated by the TTyzatool. [12]

The memory management process creates severaltopipes

for subversion. Offensive-uses of this systemudelthe rootkit

Shadow Walker used this method to reroute memdererces

rootkit discovery prevention. Shadow Walker is duge hide

rootkit memory pages from the operating system am-shadow
walker executables. It does this by marking allgages as non-
paged, and then marks the dirty-bit. This caukespagefault
handler to be invoked for every memory access éortot kits

memory pages. Using a subverted memory pagingmsyshe

rootkit points non-rootkit accesses to gibberistttisas of

memory. When it receives paging requests it allaivem

through. [8]

The PaX system uses the page fault mechanism termept no-
execute on systems without hardware support for Lthneix
operating system. PaX marks all memory pages \lith
supervisor flag. This causes the hardware pagefaridler to
invoke the page-fault trap handler to accommodaeetror. PaX
simply determines whether an attempted executetheagesult of
an execute operation. If the result is an exeopggation, then a
fault is raised and the program is terminated. [7]

OllyBonE uses a similar techinique as PaX and Siadfalker to
implement break-on-execute. It interfaces withyDHg to be
able to break on regions of memory. This allows thverse
engineer to identify where a possible executionoredor the
original entry point is at, and then trigger a dglai that point.
OllyBonE uses the supervisor bit of the page talevell. [6]

2. SOFTWARE ARMORING TECHNIQUES

It is useful to have an understanding of the methoded by
reverse engineers to gain an understanding of loogtap them.
Reverse engineers have a common set of tools tkatised to
find useful information from a binary. The goaltbE developer
protecting her code is to prevent the reverse emgirfrom
discovering how it works. In this context it isefisl to analyze
the techniques from both sides of the conflict.isTéection will
discuss packing, virtual machine detection, debugigection,
and finally the shifting decode problem.

2.1 Packing / Encryption

Packing is the method that an executable uses fiscdte an
executable or to reduce its size. Packers arecalpi

implemented with a small decoder stub which is usednpack,

or deobfuscate the binary in question. Once theodieg or

“unpacking” process is complete, the decoder shém transfers
control back to the original code of the prograBExecution then

proceeds similarly to that of a normal executalf®ackers create
problems for malware analysts. First, current méshthat are
generically available require the analyst to malyugihgle-step a

debugger in order to find and expose the actuat exécutable or
to analyze the assembly of the decoding stub inkdigporder to
write a decoder. Second, many techniques suchhaset
described in section 2.3 can be used to thwartutigacking
process.

2.2 Virtual Machine Detection

Detecting the presence of a virtual machine is ohéhe most
important methods available to the malware autbgorbtect his
code from analysis. Typically under normal openmgi a
malicious program will never be run inside of atwa machine.
The typical targets for malware authors are stdadeasystems
that are being used for everyday tasks such ad,esna online
banking. If a virtual machine is detected, it isshlikely being
used to analyze the malware. Due to inherent flathe X86
architecture, virtualization cannot be supportedhat hardware
level. Certain instructions are known to be proidéc. [13] As
such there are a few common methods that are bimila detect
these.

The common theme throughout all of the advancedualir
machine detection methodologies is a single instndhat must
yield the same results in ring-0, or the kernelceien space, and
at the user privilege execution space. For the@ a&hitecture
these are composed of the SLDT, SIDT, and SGDTuosbns.
The malware author can simply perform these intitos, and
compare the results afterwards. Results will biéertint for
virtual machines executing these instructions wbempared to
real-hardware executing them. [2] One method taat be used
to circumvent this detection is to disable “accatien” inside of a
virtual machine environment. (in this case VMWareYhis
degrades performance but is usually sufficient ghoto evade
detection. Unfortunately when running in the ncceerated
mode there are still processor implementation disncies that
can be used to identify the presence of a virtuathine. [14]

2.3 Debugger Detection

Debugging a running executable is one of the mastepful
techniques available to a reverse engineer to fuiokderstand
program execution. Using this method, it is pdssio see the
actual run-time dynamics of an executable, as waglimonitor
system calls. Unfortunately the presence of a dgéuis trival
for the process being debugged to detect. Thisioseavill
discuss process debugging in detail.

2.3.1 Windows Debugging API

The Windows operating system implements a robust P

developing custom debuggers for applications.s Itiplemented
using a call-back method which allows the operasggtem to
single-step a running program at the machine instm level.

This API is used by the OllyDbg, WinDbg, and Visustudio

debuggers. The API allows the running prograneteive events
based on pre-set instruction level flagging. Ddecof this type
of debugger is as simple as looking at the proerssution block
PEB for a running program. The PEB is a data-tinecthat
contains information relevant to the running progiaside of the



Windows operating system. One field that is avdéanside the
data-structure is BeingDebugged field. If this st set, it
indicates that a debugger is attached to the psocEsrtunately
for the analyst, this bit can be toggled withousihg the
debugging capability.

2.3.2 INT3 Instruction Scanning

The next method used to implement a debugger iBNh@
instruction, sometimes referred to as a breakpoioeption. This
instruction causes a CPU trap to occur in the dpgyaystem.
The trap is then propagated to the running prograrthe
operating system and passed to the running progfdris.
provides a method by which a developer can setakipoint.
However, programmers almost never put int 3 insioas directly
into their programs so it is likely that if thisadserved, a process
is being monitored. Malware authors have implengtrtgious
methods to scan for the presence of this INT3 uesiton, and
alter execution if it is found. A simple CRC chemkMD5SUM
can detect and validate that the code has notdlesed by an
INT3.

2.3.3 Unhandled Structured Exception Handlers
Structured exception handler (SEH) unpacking ceeateother
interesting problem for the reverse engineer. @&EHa method of
catching exceptions from running applications. sehare used
when a particular program has a runtime error. niNdlly when an
SEH is reached execution is passed to the hanaeptogram
developer has defined, or treated as an unhandisebton and
execution halts. Malware authors have seized i method for
implementing an unpacker. The malware author iaserSEH
and their own handler. This handler is typicallsed of unpacking
instructions. The SEH frame contains a pointerh® previous
SEH frame and a pointer to the exception handlethe current
frame. By triggering SEH exceptions the stack ofmalware
program is unwound until an appropriate handléousid. Due to
the nature of the debugging interface, the debugdéinsert its
own SEH handling onto this stack. When the debdggegram
is run, it will raise an exception. This causes debugger’s stack
to catch and handle the SEH instead, possibly trgsthe
debugger and preventing the malware from unpackiself.
Since there is no way for the debugger to discestwden an
exception generated by an error in its program,tarddebugged
program, this typically thwarts unpacking. Debuggprograms
such as OllyDbg have implemented methods to allwwreverse
engineer to either handle the exception inside dileugger, or
hand it to the debugged application’s stack. Tais be a very
manual and tedious process if many SEHs are used.

2.3.4 Mid-Instruction Jumping

Typically a debugger will try to interpret the maeh code of a
running executable and print out more human readahtput.

Given the non-fixed-size of the Intel instructioet,sthis creates
many opportunities for obfuscation of the run-timecution. A

typical trick that can be performed is to take @glinstruction and
the value 0x90 as a parameter. This last parapmieterpreted on
its own is the nop, or no-operation instructiorhisTwill cause the
CPU to run to the next instruction and continuecetien.

2.3.5 Shifting Decode Frame

Shifting decode frame is a method by which a partaf the

executable is unpacked, executed, then re-encotibd method
has the effect of preventing static post-executoalysis. This
precludes the ability to step the executable topthstion of the
original entry point, and dump the entire execwgabllt also

significantly affects program analysis and cregtesblems for

rapid analysis. Therefore the only options avédae to reverse
engineer the decoding mechanism and manually dec¢bde
executable, or to use a dynamic method to exttaetrélevant
information. The rest of this paper will focus aynamic

methods of program execution monitoring.

3. DEBUGGING REQUIREMENTS

Software armoring techniques all have a single comfailure

point, which is the processor must execute realhmaccode.
Once this occurs an analyst should be able to wbsand

understand the code’s functionality and capabdliti&Vhile there
are methods such as RISE [16] that could add durdifficulty

the analyst’s ability to observe and understandfiszated code
execution in general most armoring techniques subcto this

fundamental situation.

Covert debugging is defined as the method of balig to single
step and analyze a running program without indicatio the
debugee of this status. The requirements for art@ebugging
system are as follows. First it should be ablddadle a wide-
variety of executables. This paper limits its sedp the context
of portable executable PE files running under thinddws

operating system. PE files were chosen as the rityajof

malware threats are present on the Windows platfo@iven the
different methods for protecting PE files, a systdmt could
robustly handle each of these without difficultysweeeded.

Efficiency is a prime concern. Given a sufficierilyge collection
of malware it is important to be able to extractevant
information rapidly without incurring too much ovexad. The
analyst's time is valuable therefore speed and raation are
essential.

4. DYNAMIC INSTRUMENTATION

Dynamic instrumentation (DI) can be used to trace éexact
execution of a debugged binary. This has many iegifins
inside of computer architecture analysis as well paggram
analysis. DI tools such aglgrind andPIN can provide insight
into the execution characteristics of a programor Falware
analysis Pin is especially useful.

Intel PIN is a highly configurable software toolr fsacking the
run-time execution of a program. Pin interfacethwhe machine
code via a series of callbacks that are registenedanalysis
startup. One can divert execution of a prograsaah instruction
step. Memory access can also be monitored forsraad writes
to addresses. All of these systems make it easydnitor a
running program, and divert execution if necessary.



4.1 Application to Packed Executables

Saffron uses PIN’s dynamic runtime tracing to monihe flow
of executables. The results that are found are gtartling. First
it is possible to find the original entry point fa packed
executable. In section two we highlighted variousthods used
to protect and compress a running executable. r&gking the
memory reads and writes, we can watch where thg@ramo
modifies memory locations during the course of efea.
Furthermore we can use this information to watahefcecutions
inside of this written memory area. This is a Ihyglikely
candidate for an original entry point.

4.2 Results

The packers ASPack, UPX, FSG, and PeCompact, ahdcke
were considered for the initial set of tests. Ehpackers either
compress or obfuscate a malicious binary. In easle except for
TelLock, the use of a specialized PIN module was #bldentify

the original entry point for the packed executablEhe results
were then verified by manually reverse engineeritige

executable. The TeLock packed executable didurofproperly

when monitored using the PIN instrumentation lilprarTelock

uses a memory CRC check prior to relinquishing mbrto the

original entry point.

There are other problems with dynamic instrumeomatiFirst it is
extremely slow, especially when monitoring at thmstiuction
level. Packers that use SEH for unpacking alssgmethe same
problems with PIN as they do with standard debuggddue to
this it is necessary to move outside of the contéxd userspace
solution, and look at controlling execution frone tkernel mode.

5. PAGEFAULT HANDLER DEBUGGING

The pagefault handler is an important part of modgperating
systems. Its primary purpose is to assist the GPtémory
management unit in paging, or writing to disk, ems of the
virtual memory space. It also performs tasks sagtenforcing
permissions for kernel mode versus user mode memagyipns.
Since it has a special place within the operatiygjesn, mainly
controlling access to the memory of all the appiices on a
system, it can be used to control the executiomroexecuting
program. The bulk of this work is a modificatioftioe OllyBonE
tool by Joe Stewart. This section will discuss ithplementation
of the new method, which has been named Saffron.

5.1 X86 Memory Management

The X86 architecture implements a combination gitsentation
and paging mechanisms for implementing virtual mgmd15]
Virtual memory is simply a method to create a potee address
space for processes running on a computer systeatiows for a
non-contiguous address space (physical memorygtosed as a
contiguous one (virtual memory). The memory adsltbat an
application refers to must undergo a transformatiiotine physical
address space of the main memory. The translatiok-aside
buffer (TLB) is primarily responsible for perforngrthis lookup.
The purpose of the TLB is to improve speed by usiagiware to
assist the lookup process for a section of memory.

5.2 The TLB Process

At its core, the TLB is an associative array fanslated blocks of
memory. When a virtual address is first refereniced program,
the TLB will look to see if it is present in itsatze. If it is found
the physical address is translated without furtéetion. This is
referred to as a “hit”. If the address is not fdutis referred to as
a “miss”. For the miss case, there are two commethods for
memory management architectures. The first isatetthe TLB
walk the segment tables to check for the existerice memory
page. If the page is found in memory it is retdriaad entered
into the TLB for future lookups. If the page istround, or the
page table entry (PTE) has any access flags sepabe-fault
handler is invoked. It is then up to the operatBygtem to
perform a software lookup of the memory addregghd OS can
find no reference to the page of memory, then aegmtion occurs
and the OS must handle it. [15]

Hardware

Is the virtual address

Present in the cache?

I
No

Walk the Page Directory

No
v

Return the
Address

Is the PTE Valid?

FAULT INT(

Operating
System l

Is it paged to disk? |—Ye

[
No

+

Are Permissions Ye
correct?

Return Address
via
IRETD

T
No

Figure 1: Typical TLB / OS Interaction

Each process has its own set of segments thatsad uOn a
process context-switch, the TLB flushes its caclking begins the
process of loading new memory translations. Theuahc
characteristics of memory are controlled by a datacture called
a page table entry (PTE). The PTE contains varitags for

permission controls of the particular section ofhmey.

When the TLB begins the process of translatingriuai address
to a physical one it first checks its local cachiethe cache does
not contain an entry for the virtual address itntHeegins to
manually traverse the page tables to find the &iraddress in
hardware. Once the page table entry has been fdatuddecks a



series of fields to make sure that the permissiares correct.
Once this is done the memory address is returnedhéo
referencing instruction. Figure 1 illustrates thiscess.

5.3 Saffron’s Pagefault Implementation

To implement the debugging of an executable, tlognam must
allow for a stepping operation of the executablehe previous
implementations are focused on stopping or divgr8recution.
Furthermore they are privileged enough to have kedge of
specific areas of memory to fault on. Shadow Walkses its
own memory that it can control in non-paged memaPaX has
low-level access to the OS primitives which contted memory
management mechanism under Linux. OllyBonE retiesthe
reverse engineer tagging various areas of memoigtmihknows
are valid. Unfortunately this pre-knowledge canaot is not
known at the time of execution for a generic agglan. Saffron
consists of two distinct elements. First it usdsyhrid memory
scanning and tagging mechanism to identify memomyasa
Second a modified version of the page-fault trapdher is used
to dispatch information on the page-faults.

The memory mapping algorithm is a brute-force oa &mtire
process’s virtual memory area. All memory addressee
enumerated based on the page boundaries. Thesessekl are
then tagged with the supervisor bit so executiontEamonitored.
The page tag boundaries are useful in optimizirig tharking
process.

The page fault execution detection is very sintitathe code used
in Shadow Walker and OllyBonE. The modification ttos
method is to move from a faulting operation to @ging
operation. The other modification is to allow thddress to
continue to execute once it has been logged ingiéaiiggering
the debug interrupt.

5.4 Results on Packed Executables

The same method was implemented as in sectionSirice there
is no modification to the process’ address spaletetis no
method for detection in the context of the exedetaldMonitoring
of runtime execution allows for a coarse grain viel the
executable. As expected this allows the deteatiotine original
entry point on a packed executable.

There are some problems with this method. Sineg@é#ge caches
are aligned on a 4k boundary, there will be timégma memory
read or write will go unnoticed by Saffron. Eveithathis method

it is still possible to track an executable suéfigily enough to find

out where the original entry point is located orget a dump of
the process’s memory space with useful,
information.

6. CONCLUSION AND FUTURE WORK

Dynamic instrumentation and pagefault handler stgioe are
extremely useful for tracking the execution of uokm or
obfuscated executables. Since dynamic translaitords the
most control over an executable, it should be it fnethod

deobfudcate

attempted when tracing runtime execution. If atipalarly
virulent and clever method is able to subvert tha, page fault
execution mechanism is useful to track memory usage

There is much work to be done in the methods ofingathe page
fault tracking mechanism more robust. The Intgblementation
of a split data TLB and instruction TLB causes peafs with

fully tracing the runtime execution using the padmult

mechanism. One useful application of this metthoald be to
apply it to a shifting frame decode unpacking mdtho

7. ACKNOWLEDGEMENTS

We would like to thank Lorie Liebrock for helping hash ideas
out about the page fault handler algorithm. Speahinks go to
Bill Weiss for helping to debug Windows kernel coded for
many useful brainstorming sessions. Thanks als¢vex and
Jerry DeLapp for their help and support.

8. REFERENCES

[1] Rutkowska, J.Beyond The CPU: Defeating Hardware Based RAM Adtipris
Tools (Part I: AMD case) Blackhat Federal, February 2007

[2] Ferrie, P. Attacks on Virtual Machine EmulatorSymantec Advanced Threat
Research

[3] Amini, P., Carrera, EReverse Engineering on Windows: A Focus on
Malware, Blackhat USA 2006

[4] Miller, M., Johnson, K.Bypassing Patchguard on Windows x&&informed
Volume 3., January 2006

[5] Johnson, K.Subverting Patchguard Version @ninformed, Volume 6,
January 2007

[6] stewart, J.0llyBonE: Semi-Automatic Unpacking on I1A;E%efcon 14,
August 4, 2006

[7] Pax TeampaX http://pax.grsecurity.net/docs/pax.txt

[8] sparks, S., Butler, JShadow Walker: Raising the Bar for Windows Rootkit
Detection Phrack 63, Volume 11, File 8

[9] Vvasudevan, A, Yerraballi, RSPIKE: Engineering Malware Analysis Tools
using Unobtrusive Binary-InstrumentatioAustralian Computer Science
Conference 2006

[10] Cifuentes, C., Waddington, T., Van Emmerik, @omputer Security Analysis
through Decompilation and High-Level Debuggifgorkshop on
Decompilation Techniques, pp.375-380, 8th IEEE WGQRBrking Conf. Rev.
Eng.), Oct.2001

[11] Ma, 3., Dunagan, J., Wang, H., Savage, S., VoelkerFinding Diversity in
Remote Code Injection Explaiteiternet Measurement Conference, 2006

[12] Bayer, U., Kruegel, C., Kirda, ETTAnalyze: A Tool for Analyzing Malware
EICAR 2006

[13] Robin, J., Irvine, CAnalysis of the Intel Pentium's Ability to Supprt
Secure Virtual Machine MonitpProceedings of the 9th USENIX Security
Symposium, August 14-17, 2000.

[14] Quist, D., Smith, V.Further Down the VM SpiraDefcon 14, Las Vegas, NV
2006.

[15] Intel Processor Programmer’'s Manual, Volume 3

[16] Barrantes, G Automated Methods for Creating Diversity in Compute
Systems, Ph.D. Theslisniversity of New Mexico Computer Science
Department, 2006



